Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-17T06:51:10.721Z Has data issue: false hasContentIssue false

Pyrite-pyrrhotine redox reactions in nature

Published online by Cambridge University Press:  05 July 2018

A. J. Hall*
Affiliation:
Department of Applied Geology, University of Strathclyde, Glasgow G1 1XJ

Abstract

The origin in rocks of the common iron sulphides, pyrrhotine, Fe1-xS and pyrite, FeS2 and their behaviour during geochemical processes is best considered using the simplified redox reaction: 2FeS ⇌ FeS2 + Fe2+ + 2e.

Thus pyrrhotine is more reduced than pyrite and is the stable iron sulphide formed from magmas except where relatively high oxygen fugacities result from falling pressure or hydrothermal alteration. Pyrite, on the other hand, is the stable iron sulphide in even the most reduced sedimentary rocks where it usually forms during diagenesis through bacteriogenic reduction of sulphate; it is stable throughout the pressure/temperature range endured by normal sedimentary rocks. Pyrrhotine after pyrite or sulphate in metasediments of regional metamorphic origin results mainly from progressive reduction on metamorphism due to the presence of graphite-buffered fluids. Pyrrhotine and/or pyrite may be precipitated from hydrothermal solutions on epigenetic or syngenetic mineralization but pyrrhotine will only be preserved if protected from oxidation to pyrite or to more oxidized species. Exhalative pyrrhotine appears to have been more common in Precambrian times and/or in depositional environments destined to become regionally metamorphosed. FeS can be considered to be the soluble iron sulphide, rather than FeS2, in reduced aqueous systems although pyrite may precipitate from solution as a result of redox reactions. The relatively soluble nature of FeS explains the observed mobility of iron sulphides in all rock types.

Type
Geochemistry
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, H.L., ed. (1979) The Geochemistry of Hydrothermal Ore Deposits. Wiley, New York.Google Scholar
Barnes, H.L., and Kullerud, G. (1961) Econ. Geol, 56, 648-88.CrossRefGoogle Scholar
BVSP (1981) Basaltic Volcanism Study Project. Basaltic Volcanism on the Terrestrial Planets. Pergamon Press, New York.Google Scholar
Berner, R.A. (1964) J. Geol, 72, 826-34.CrossRefGoogle Scholar
Berner, R.A. (1970) Am. J. Sci, 268, 1-23.CrossRefGoogle Scholar
Berner, R.A. (1978) Earth Planet. Sci. Lett, 37, 492-8.CrossRefGoogle Scholar
Berner, R.A. and Raiswell, R. (1983) Geochim. Cosmochim. Ada, 47, 855-62.CrossRefGoogle Scholar
Boyce, A.J., Coleman, M.L., and Russell, M.J. (1983) Nature, 306, 545-50.CrossRefGoogle Scholar
Cann, J.R. (1980) J. Geol. Soc. London, 137, 381-4.CrossRefGoogle Scholar
Carpenter, R.H. (1974) Geol. Soc. Am. Bull, 85, 451-6.2.0.CO;2>CrossRefGoogle Scholar
Claypool, G.E., Holser, W.T., Kaplan, I.R., Sakai, H., and Zak, I. (1980) Chem. Geol, 28, 199-260.CrossRefGoogle Scholar
Craig, J.R. (1980) Norges Geol. Unders. 360, 295-325.Google Scholar
Craig, J.R. (1983) Mineral. Mag, 345, 515-26.CrossRefGoogle Scholar
Craig, J.R. and Vaughan, D.J. (1981) Ore Microscopy and Ore Petrography. Wiley, New York.Google Scholar
Crerar, D.A., Susak, N.J., Borcsik, M, and Schwartz, S. (1978) Geochim. Cosmochim. Acta, 42, 1427-37.CrossRefGoogle Scholar
Curtis, C.D. (1980) J. Geol. Soc. London, 137, 189-94.CrossRefGoogle Scholar
Curtis, C.D. and Spears, D.A. (1968) Econ. Geol, 63, 257-70.CrossRefGoogle Scholar
D'Amore, F., and Gianelli, G. (1984) Geochim. Cosmochim. Ada, 48, 847-57.CrossRefGoogle Scholar
Eugster, H.P. (1981) In Chemistry and Geochemistry of solutions at high temperature and pressure: Physics and Chemistry of the Eart. (F. E. Wickman and D. T. Richard, eds.) Pergamon Press, New York, 461507.Google Scholar
Fairbridge, R.W. (1967) In Diagenesis of Sediments (G. Larsen and G. V. Chillinger, eds.), Elsevier, 19-89.Google Scholar
Ferry, J.M. (1981) Am. Mineral, 66, 908-30.Google Scholar
Finlow-Bates, T., and Large, D.E. (1978) Geol. Jahrb, 30, 27-39.Google Scholar
Croxford, N.J.W., and Allan, J.M. (1977) Mineral. Deposita, 12, 143-9.Google Scholar
Froese, E. (1971) Econ. Geol, 66, 335-41.CrossRefGoogle Scholar
Frost, B.R. (1979) Am. J. Sci, 279, 1033-59.CrossRefGoogle Scholar
Hall, A.J. (1982) Mineral. Deposita, 17, 401-9.CrossRefGoogle Scholar
Harris, J.W., and Gurney, J.J. (1979) In The Properties of Diamond (J. E. Field, ed.) Academic Press, London, 555-91).Google Scholar
Hayman, R.M. (1983) Nature, 301, 695-8.CrossRefGoogle Scholar
Henley, R.W., Truesdell, A.H., and Barton, P.B.J.. (1984) Fluid-mineral equilibria in hydrothermal systems. Reviews in Economic Geology, 1, Soc. of Econ. Geologists, USA.CrossRefGoogle Scholar
Holland, H.D. (1959) Econ. Geol, 54, 184-233.CrossRefGoogle Scholar
Kiyosu, Y. (1980) Chem. Geol, 30, 47-56.CrossRefGoogle Scholar
Kullerud, G., and Yoder, H.S. (1959) Econ. Geol, 54, 533-72.CrossRefGoogle Scholar
Lambert, I.B. (1973) J. Geol. Soc. Austral, 20, 205-15.CrossRefGoogle Scholar
Lydon, J.W. (1983) In Sediment-hosted stratiform leadzinc deposits(D. F. Sangster, ed.) Mineral. Assoc. Can. Short Course Handbook, 9, 175-250.Google Scholar
MacRae, N.D. (1974) Can. J. Earth Sci, 11, 246-53.CrossRefGoogle Scholar
Mathez, E.A. (1984) Nature, 310, 371-75.CrossRefGoogle Scholar
Mohr, D.W., and Newton, R.C. (1983) Am. J. Sci, 283, 97-134.CrossRefGoogle Scholar
Naldrett, A.J. (1973) Can. Mining Metall. Bull, 66, 45-63.Google Scholar
Neumann, H. (1950) Mineral. Mag, 29, 234-8.Google Scholar
Ohmoto, H., and Kerrick, D. (1977) Am. J. Sci. Ill, 1013-44.Google Scholar
Plimer, I.R., and Finlow-Bates, T. (1978) Mineral. Deposita, 13, 399-410.Google Scholar
Raiswell, R and Plant, J. (1980) Econ. Geol, 75, 584-99.CrossRefGoogle Scholar
Rama Murthy, V. (1976). In The Early History of the Earth (B. F. Windley, ed.) Wiley, London, 2132.Google Scholar
Roberts, W.M.B., Walker, A.L., and Buchanan, A.S. (1969) Mineral. Deposita, 4, 1829.CrossRefGoogle Scholar
Russell, M.J., Hall, A.J., Willan, R.C.R., Allison, I, Anderton, R., and Bowes, G. (1984) In Prospecting in areas of glaciated terrain 1984, symposium volume. Instn. Mining Metall., London, 159-70.Google Scholar
Scott, S.D. (1974) In Sulfide Mineralogy, Mineralogical Society of America Short Course Notes, 1 (P. H. Ribbe, ed.), MSA, Washington, S1S38.Google Scholar
Speiss, F.N., MacDonald, K.C. Atwater, T., Ballard, R., Carranza, A., Cordoba, D., Cox, C, Diaz Garcia, V.M., Francheteau, J., Guerrero, J., Hawkins, J., Haymon, R., Hessler, R., Juteau, T., Kastner, M., Larson, R., Luyendyk, B., MacDougall, J.D., Miller, S., Normakr, W., Orcutt, J., and Rangin, C. (1980) Science, 207, 1421-33.CrossRefGoogle Scholar
Stach, E., Mackowsky, M.-T.., Teichmuller, M., Taylor, G.H., Chandra, D., and Teichmuller, R. (1982) Coal Petrology. Gebruder Borntraeger, Berlin.Google Scholar
Sunblad, K. (1981) Mineral. Deposita, 16, 129-46.Google Scholar
Taylor, G.R. (1982) Ibid. 17, 23-36.Google Scholar
Thompson, J.B., Jr. (1972) Proc. 24th Intern. Geol. Congress, 10, 27-35.Google Scholar
Trudinger, P.A. (1981) BMR J. Austral Geol. Geoph, 6, 279-85.Google Scholar
Vaughan, D.J., and Craig, J.R. (1978) Mineral chemistry of metal sulphides. Cambridge University Press, England.Google Scholar
Vokes, F.M. (1969) Earth Sci. Rev, 5, 99-143.CrossRefGoogle Scholar
Willan, R.C.R., and Coleman, M.L. (1984) Econ. Geol, 78. 1619-56.CrossRefGoogle Scholar
Willan, R.C.R., and Coleman, M.L. and Hall, A.J. (1980) Trans. Instn Min. Metall. (Sect. B: Appl. Earth Sci., 89, 31-40.Google Scholar