Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-26T22:56:40.920Z Has data issue: false hasContentIssue false

Plastic deformations in kyanites by tectonometamorphic processes: a single-crystal X-ray diffraction study

Published online by Cambridge University Press:  05 July 2018

G. D. Gatta*
Affiliation:
Dipartimento di Scienze della Terra, Universita’ degli Studi di Milano, Via Mangiagalli, 34, I-20133 Milano, Italy CNR-Istituto per la Dinamica dei Processi Ambientali, Milano, Italy
N. Rotiroti
Affiliation:
Dipartimento di Scienze della Terra, Universita’ degli Studi di Milano, Via Mangiagalli, 34, I-20133 Milano, Italy CNR-Istituto per la Dinamica dei Processi Ambientali, Milano, Italy
M. Zucali
Affiliation:
Dipartimento di Scienze della Terra, Universita’ degli Studi di Milano, Via Mangiagalli, 34, I-20133 Milano, Italy
*

Abstract

The crystalch emistry and crystal structure of naturalky anite crystals from the Eclogitic Micaschists Complex of the Sesia-Lanzo Zone, Western Italian Alps, have been investigated by means of optical microscopy, wavelength dispersive X-ray microanalysis, and single-crystal X-ray diffraction. The association of kyanite + garnet + phengitic-mica + chloritoid suggests that the eclogite-facies stages occurred at P ≤ 2.1 GPa and T ≤ 650ºC. Kyanite grains are large (cm-sized) porphyroblasts grown dynamically during one of the deformational events related to the subduction of the Austroalpine continentalcr ust. Under the polarizing microscope, kyanite grains show almost homogeneous cores, whereas rims are sometimes symplectitic aggregates of quartz and kyanite, confirming at least two stages of growth most likely related to the multistage deformational history of these rocks. Chemical analysis shows that Fe3+ is the major substituting cation for Al3+, ranging between 0.038 and 0.067 a.p.f.u.

The single-crystal X-ray diffraction investigation of the kyanites shows severely textured patterns on the (h0l)*-plane. Such evidence is not observed in the unwarped diffraction patterns on (0kl)* and (hk0)*. The most significant difference between the structuralp arameters refined in this study, with respect to those of previously published unstrained gem-quality crystals, concerns the displacement parameters. The anisotropic displacement ellipsoids of all the atomic sites are significantly larger than those previously described, and systematically oriented with the largest elliptical section almost perpendicular to [010]. The larger ellipsoids in the kyanite crystal investigated here reflect the displacement of the centre of gravity of the electron distribution, rather than an anomalous atomic thermal motion. The magnitude and orientation of the displacement parameters and the textured/strained diffraction pattern may be the result of two combined effects: (1) that the kyanite crystals are actually composed of several blocks; (2) the crystals are affected by a pervasive residual strain, as a result of tectonometamorphic plastic deformations and re-crystallization.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, P.A. and Kleppa, O.J. (1969) The thermochemistry of the kyanite-sillimanite equilibrium. American Journal of Science, 267, 285—290.CrossRefGoogle Scholar
Beane, R.J. and Field, C.K. (2007) Kyanite deformation in whiteschist of the ultrahigh-pressure metamorphic Kokchetav Massif, Kazakhstan. Journal of Metamorphic Geology, 25, 117—128.CrossRefGoogle Scholar
Bohlen, S.R., Montana, A. and Kerrick, D.M. (1991) Precise determinations of the equilibria kyanite- sillimanite and kyanite-andalusite and a revised triple point for Al2SiO5 polymorphs. American Mineralogist, 76, 677—680.Google Scholar
Brace, W.F., Scholz, C.H. and LaMori, P.N. (1969) Isothermal compressibility of kyanite, andalusite and sillimanite from synthetic aggregates. Journal of Geophysical Research, 74, 2089—2098.CrossRefGoogle Scholar
Burnham, C.W. (1963) Refinement of the crystal structure of kyanite. Zeitschrift für Kristallographie, 118, 337—360.Google Scholar
Comodi, P., Zanazzi, P.F., Poli, S. and Schmidt, M.W. (1997) High-pressure behaviour of kyanite; compressibility and structural deformations. American Mineralogist, 82, 452—459.CrossRefGoogle Scholar
Compagnoni, R., Dal Piaz, G.V., Hunziker, J.C., Gosso, G., Lombardo, B. and Williams, P.F. (1977) The Sesia-Lanzo Zone, a slice of continental crust with alpine high pressure-low temperature assemblages in the western Italian Alps. Rendiconti della Societa Italiana di Mineralogia e Petrologia, 33, 281—334.Google Scholar
Dal Piaz, G.V., Hunziker, J.C. and Martinotti, G. (1972). La Zona Sesia-Lanzo e l’evoluzione tettonico- metamorfica delle Alpi Nordoccidentali interne. Memorie della Societa Geologica Italiana, 11, 433—460.Google Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (1992) An introduction to the rock-forming minerals (2nd edition). Longman Scientific & Technical, Harlow, UK, 696 pp.Google Scholar
Doukhan, J.C., Doukhan, N., Koch, P.S. and Christie, J.M. (1985) TEM investigation of lattice defects in Al2SiO5 polymorphs and plasticity induced polymorphic transformations. Bulletin de Mineralogie, 108, 81—96.Google Scholar
Droop, G.T. (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine, 51, 431—435.CrossRefGoogle Scholar
Fischer, R.X. and Tillmanns, E. (1988) The equivalent isotropic displacement factor. Acta Crystallographica C, 44, 775—776.Google Scholar
Friedrich, A., Kunz, M., Winkler, B. and Le Bihan, T. (2004) High-pressure behaviour of sillimanite and kyanite: Compressibility, decomposition and indication of a new high-pressure phase. Zeitschrift für Kristallographie, 219, 324—329.Google Scholar
Gatta, G.D., Nestola, F. and Walter, J.M. (2006) On the thermo-elastic behaviour of kyanite: a neutron powder diffraction study up to 1200°C. Mineralogical Magazine, 70, 309—317.CrossRefGoogle Scholar
Gosso, G. (1977) Metamorphic evolution and fold history in the eclogite mica schists of the upper Gressoney valley (Sesia-Lanzo zone, Western Alps). Rendiconti della Societa Italiana di Mineralogia e Petrologia, 33, 389—407.Google Scholar
Holdaway, M.J. (1971) Stability of andalusite and the aluminum silicate phase diagram. American Journal of Science, 271, 97—231.CrossRefGoogle Scholar
Inger, S., Ramsbotham, W., Cliff, R.A. and Rex, D.C. (1996) Metamorphic evolution of the Sesia-Lanzo Zone, Western Alps: time constraints from multisystem geochronology. Contributions to Mineralogy and Petrology, 126, 152—168.CrossRefGoogle Scholar
Kerrick, D.M. (1990) The Al2SiO5 Polymorphs. Reviews in Mineralogy, 22. Mineralogical Society of America, Chantilly, Virginia, USA, 406 pp.CrossRefGoogle Scholar
Lardeaux, J.M. (1981) Evolution tectono-metamorphi- que de la zone nord du Massif de Sesia-Lanzo (Alpes occidentales): un exemple d’eclogitisation de croute continentale. PhD thesis, University Pierre et Marie Curie, Paris VI.Google Scholar
Lardeaux, J.M. and Spalla, M.I. (1991) From granulites to eclogites in the Sesia zone (Italian Western Alps): a record of the opening and closure of the Piedmont ocean. Journal of Metamorphic Geology, 9, 35—59.CrossRefGoogle Scholar
Lenze, A., Stockhertand, B. and Wirth, R. (2005) Grain scale deformation in ultra-high-pressure metamorphic rocks—an indicator of rapid phase transformation. Earth and Planetary Science Letters, 229, 217—230.CrossRefGoogle Scholar
Naray-Szabo, S., Taylor, W.H. and Jackson, W. (1929) The structure of kyanite. Zeitschrift für Kristallographie, 71, 117—130.Google Scholar
Oxford Diffraction (2005) Xcalibur CCD system, CrysAlis Software system, Version 1.170 Oxford Diffraction Ltd, Oxford, UK.Google Scholar
Petříček, V., Dusek, M. and Palatinus, L. (2000) Jana2000. Structure Determination Software Programs. Institute of Physics, Praha, Czech Republic.Google Scholar
Pognante, U. (1989a) Tectonic implications of lawsonite formation in the Sesia zone (Western Alps). Tectonophysics, 162, 219—227.CrossRefGoogle Scholar
Pognante, U. (1989b) Lawsonite, blueschist and eclogite formation in the southern Sesia Zone (Western Alps, Italy). European Journal of Mineralogy, 1, 89—104.CrossRefGoogle Scholar
Pognante, U., Compagnoni, R. and Gosso, G. (1980) Micro-mesostructural relationships in the continental eclogitic rocks of the Sesia-Lanzo zone: a record of a subduction cycle (Italian Western Alps). Rendiconti della Societal Italiana di Mineralogia e Petrologia, 36, 169—186.Google Scholar
Polino, R., Dal, Piaz G.V. and Gosso, G., (1990) Tectonic erosion at the Adria margin and accretionary processes for the Cretaceous orogeny of the Alps. Pp. 345—367 in: Deep Structure of the Alps (F. Roure, P. Heitzmann, and R. Polino, editors). Memoires de la Societe Geologique de France, 156, Paris.Google Scholar
Ribbe, P.H. (1982) Kyanite, andalusite and other aluminum silicates. Pp. 189—214 in: Ortho-silicates (P.H. Ribbe, editor). Reviews in Mineralogy, 5 (2nd edition). Mineralogical Society of America, Chantilly, Virginia, USA.Google Scholar
Richardson, S.W., Gilbert, M.C. and Bell, P.M. (1969) Experimental determination of kyanite-andalusite and andalusite-sillimanite equilibria; the aluminum silicate triple point. American Journal of Science, 267, 259—272.CrossRefGoogle Scholar
Rubatto, D., Gebauer, D. and Compagnoni, R. (1999) Dating of eclogite-facies zircons; the age of Alpine metamorphism in the Sesia-Lanzo Zone (Western Alps). Earth and Planetary Science Letters, 167, 141 — 158.CrossRefGoogle Scholar
Ruffet, G., Gruau, G., Ballevre, M., Feraud, G. and Philippot, P. (1997) Rb-Sr and 40Ar-39Ar laser probe dating of high-pressure phengites from the Sesia Zone (Western Alps); underscoring of excess argon and new age constraints on the high-pressure metamorphism. Chemical Geology, 141, 1 — 18.CrossRefGoogle Scholar
Schmidt, M.W., Poli, S., Comodi, P. and Zanazzi, P.F. (1997) High-pressure behaviour of kyanite; decomposition of kyanite into stishovite and corundum. American Mineralogist, 82, 460—466.CrossRefGoogle Scholar
Spalla, M.I. and Zulbati, F. (2004) Structural and petrographic map of the southern Sesia-Lanzo Zone; Monte Soglio-Rocca Canavese, Western Alps, Italy. Memorie di Scienze Geologiche 55, 119—127.Google Scholar
Spalla, M.I., Zucali, M., Di Paola, S. and Gosso, G. (2005) A critical assesment of the tectono-thermal memory of rocks and definition of the tectonometa- morphic units: evidence from fabric and degree of metamorphic transformations. Pp. 227—247 in: Deformation Mechanisms, Rheology and Tectonics: from Minerals to the Lithosphere (D. Gapais, J.P. Brun and P. Cobbold, editors). Special Publications, 243, The Geological Society, London.Google Scholar
Tropper, P. and Essene, E.J. (2002) Thermobarometry in eclogites with multiple stages of mineral growth: an example from the Sesia-Lanzo Zone (Western Alps, Italy). Schweizerische Mineralogische und Petrographische Mitteilungen, 82, 487—514.Google Scholar
Tropper, P., Essene, E.J., Sharp, Z.D. and Hunziker, J.C. (1999) Application of K-feldspar-jadeite-quartz barometry to eclogite facies metagranites and metapelites in the Sesia Lanzo Zone (Western Alps, Italy). Journal of Metamorphic Geology, 17, 195— 209.CrossRefGoogle Scholar
Winter, J.K and Ghose, S. (1979) Thermal expansion and high-temperature crystal chemistry of the Al2SiO5 polymorphs. American Mineralogist, 64, 573—586.Google Scholar
Wilson, A.J. and Prince, E. (editors). (1999) International Tables for X-ray Crystallography, Volume C: Mathematical, Physical and Chemical Tables (2nd Edition). Kluwer Academic, Dordrecht, Netherlands.Google Scholar
Yang, H., Downs, R.T., Finger, L.W., Hazen, R.M. and Prewitt, C.T. (1997) Compressibility and crystal structure of kyanite, Al2SiO5, at high pressure. American Mineralogist, 82, 467—474.CrossRefGoogle Scholar
Zucali, M. (2002) Foliation map of the ‘Eclogitic Mica- schists Complex’ (Monte Mucrone - Monte Mars - Mombarone, Sesia-Lanzo Zone, Italy). Memorie Scienze Geologiche, 54, 86—100.Google Scholar
Zucali, M. (2009) jPT - Software for mineral formula calculation and geo-thermobarometry - http://user-s.unimi.it/mzucali/dev/java/JPTproject/Google Scholar
Zucali, M., Chateigner, D., Dugnani, M., Lutterotti, L. and Ouladdiaf, B. (2002a) Quantitative texture analysis of naturally deformed hornblendite under eclogite facies conditions (Sesia-Lanzo Zone, Western Alps): comparison between X-ray and neutron diffraction analysis. Pp. 239—253, in: Deformation Mechanisms, Rheology and Tectonics: Current Status and Future perspectives (S. De Meer, M.R. Drury, J.H.P De Bresser and G.M. Pennock, editors), Special Publications, 200, The Geological Society, London.Google Scholar
Zucali, M., Spalla, M.I. and Gosso, G. (2002b) Strain partitioning and fabric evolution as a correlation tool: The example of the Eclogitic Mica schists Complex in the Sesia-Lanzo Zone (Monte Mucrone - Monte Mars, Western Alps Italy). Schweizerische Mineralogische und Petrographische Mitteilungen, 82, 429—454.Google Scholar
Supplementary material: File

Gatta et al. supplementary material

Structure factors 1

Download Gatta et al. supplementary material(File)
File 90.2 KB
Supplementary material: File

Gatta et al. supplementary material

Strucure Factors 2

Download Gatta et al. supplementary material(File)
File 89.6 KB
Supplementary material: File

Gatta et al. supplementary material

Structure factors 3

Download Gatta et al. supplementary material(File)
File 89.8 KB