Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-gx6zg Total loading time: 1.037 Render date: 2023-02-05T20:01:29.147Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Nomenclature of the perovskite supergroup: A hierarchical system of classification based on crystal structure and composition

Published online by Cambridge University Press:  02 January 2018

Roger H. Mitchell*
Affiliation:
Department of Geology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada
Mark D. Welch
Affiliation:
Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
Anton R. Chakhmouradian
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

On the basis of extensive studies of synthetic perovskite-structured compounds it is possible to derive a hierarchy of hettotype structures which are derivatives of the arisotypic cubic perovskite structure (ABX3), exemplified by SrTiO3 (tausonite) or KMgF3 (parascandolaite) by: (1) tilting and distortion of the BX6 octahedra; (2) ordering of A- and B-site cations; (3) formation of A-, B- or X-site vacancies. This hierarchical scheme can be applied to some naturally-occurring oxides, fluorides,hydroxides, chlorides, arsenides, intermetallic compounds and silicates which adopt such derivative crystal structures. Application of this hierarchical scheme to naturally-occurring minerals results in the recognition of a perovskite supergroup which is divided into stoichiometric and non-stoichiometricperovskite groups, with both groups further divided into single ABX3 or double A2BB'X6 perovskites. Subgroups, and potential subgroups, of stoichiometric perovskites include: (1) silicate single perovskites of the bridgmanite subgroup;(2) oxide single perovskites of the perovskite subgroup (tausonite, perovskite, loparite, lueshite, isolueshite, lakargiite, megawite); (3) oxide single perovskites of the macedonite subgroup which exhibit second order Jahn-Teller distortions (macedonite, barioperovskite); (4) fluoride singleperovskites of the neighborite subgroup (neighborite, parascandolaite); (5) chloride single perovskites of the chlorocalcite subgroup; (6) B-site cation ordered double fluoride perovskites of the cryolite subgroup (cryolite, elpasolite, simmonsite); (7) B-site cation orderedoxide double perovskites of the vapnikite subgroup [vapnikite, (?) latrappite]. Non-stoichiometric perovskites include: (1) A-site vacant double hydroxides, or hydroxide perovskites, belonging to the söhngeite, schoenfliesite and stottite subgroups; (2) Anion-deficient perovskitesof the brownmillerite subgroup (srebrodolskite, shulamitite); (3) A-site vacant quadruple perovskites (skutterudite subgroup); (4) B-site vacant single perovskites of the oskarssonite subgroup [oskarssonite]; (5) B-site vacant inverse single perovskites of the coheniteand auricupride subgroups; (6) B-site vacant double perovskites of the diaboleite subgroup; (7) anion-deficient partly-inverse B-site quadruple perovskites of the hematophanite subgroup.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

References

Abilgaard, H. (1799) Cryolith, Thonerde mit Flussäure. Allgemeines Journal der Chemie, 2, 502–000.Google Scholar
Aguado, F., Rodriguez, F., Hirai, S., Walsh, J.N., Lennie, A. and Redfern, S.A.T. (2008) High-pressure behaviour of KMF3 perovskite. High Pressure Research, 28, 539544.CrossRefGoogle Scholar
Akber-Knutson, S., Bukowinski, M.S.T. and Matas, J. (2002) On the structure and compressibility of CaSiO3 perovskite. Geophysical Research Letters, 29, 4–1—4-4.CrossRefGoogle Scholar
Anthony, J.W., Bideaux, R.A., Bladh, K.W and Nicholls, M.C. (1997). Handbook of Mineralogy. Volume III. Halides, Hydroxides, Oxides. Mineral Data Publishing, Tucson, Arizona, USA.Google Scholar
Arakcheeva, A.V., Lubman, G.U., Pisharovski, D.U., Gekimyants, V.M. and Popov, G.U. (1997) Crystal structure of micro-twinned natural orthorhombic perovskite CaTiO3 . Crystallography Reports, 42, 4654.Google Scholar
Arulesan, S.W., Kayser, P., Kennedy, B.J. and Knight, K. S. (2016a) The impact of room temperature polymorphism in K doped NaTaO3 on structural phase transition behaviour. Journal of Solid State Chemistry, 238, 109122.CrossRefGoogle Scholar
Arulesan, S.W., Kayser, P., Kennedy, B.J., Kimpton, J.A. and Knight, K.S. (2016b) Phase separation in NaTaO3. Impact of temperature and doping. Solid State Sciences, 52, 149153.CrossRefGoogle Scholar
Atencio, D., Andrade, M.B., Christy, A.G., Gieré, R. and Kartashov, P.M. (2010) The pyrochlore supergroup of minerals: nomenclature. The Canadian Mineralogist, 48, 673698.CrossRefGoogle Scholar
Barnes, P.W., Lufaso, M.W. and Woodward, P.M. (2009) Structure determination of A2M3+TaO6 and A2M3+NbO6 ordered perovskites: octahedral tilting and pseudo-symmetry. Acta Crystallographica, B62, 384396.CrossRefGoogle Scholar
Barth, T. (1925) Die Kristallstruktur von Perovskit und verwandten Verbindugen. Norsk Geologisk Tidskrift, 8, 201216.Google Scholar
Basciano, L.C., Peterson, R.C. and Roeder, P.L. (1998) Description of schoenfliesite, MgSn(OH)6 and rox-byite, Cu1. 72S, from a 1375 BC shipwreck, and Rietveld neutron-diffraction refinement of synthetic schoenfliesite, wickmanite, MnSn(OH)6 and burtite, CaSn(OH)6 . The Canadian Mineralogist, 36, 12031210.Google Scholar
Batuk, M., Batuk, D., Tsirlin, A.A., Rozova, M.G., Antipov, E.V., Hadermann, J. and Van Tendeloo, G. (2013) Homologous series of layered perovskites An + 1BnO3n jCl: Crystal and magnetic structure of the oxychloride Pb4BiFe4O11Cl. Inorganic Chemistry, 52, 22082218.CrossRefGoogle Scholar
Bayliss, P. (1990) Revized unit-cell dimensions, space group, and chemical formula of some metallic minerals. The Canadian Mineralogist, 28, 751755.Google Scholar
Becerro, A.J., Lauterbach, S., McCammon, C.A., Langhorst, F., Angel, R. and Seifert, E (1999). Oxygen defect clustering in CaTiO3-CaFeO2 5 per-ovskites: a model for the lower mantle. European Journal of Mineralogy, 11, Supplement 1, p. 27.Google Scholar
Bentor, Y.K., Grass, S. and Heller, L. (1963) High temperature minerals in non-metamorphosed sedi-ments in Israel. Nature, 199, 478–79.CrossRefGoogle Scholar
Beran, A., Libowitzky, E. and Armbruster, T.A. (1996) Single crystal infra-red spectroscopic and X-ray diffraction study of untwinned San Benito perovskite containing OH groups. The Canadian Mineralogist, 34, 803809.Google Scholar
Berggren, J. (1971) Refinement of the crystal structure of dicalcium ferrite Ca2Fe2O5 . Acta Chemica Scandinavica, 25, 36163624.CrossRefGoogle Scholar
Bertaut, E.F., Blum, P. and Sagnieres, P. (1959) Structure du barite bicalcique et de la brownmillerite. Acta Crystallographica, 12, 149159.CrossRefGoogle Scholar
Betterton, J., Green, D.L., Jewson, C., Spratt, J. and Tandy, P. (1998) The composition and structure of jeanbandyite and natanite. Mineralogical Magazine, 62, 707712.CrossRefGoogle Scholar
Birch, W.D., Pring, A., Reller, A. and Schmalle, H.W. (1993) Bernalite, Fe(OH)3, a new mineral from Broken Hill, New South Wales: Description and structure. American Mineralogist, 78, 827834.Google Scholar
Blackburn, W.H. and Dennen, W.H. (1997) Encylopedia of Mineral Names. The Canadian Mineralogist Special Publication 1. Mineralogical Association of Canada Québec, Canada.Google Scholar
Böggild, O.B. (1912) Krystallform und Zwillings-bildungen des Kryoliths, des Perowskits und des Baracits. Zeischriftfür Kristallographie, 50, 439–29.Google Scholar
Bogue, R.H. (1955) The Chemistry of Portland Cement. Reinhold, New York. Bonshtedt-Kupletskaya, E.M. (1946) New observations on minerals of the perovskite group. Problems in Mineralogy, Geochemistry and Petrography. Nauka Press, Moscow.Google Scholar
Bowman, H.L. (1908) On the structure ofperovskite from the Bergumer Alp, Pfitschtal, Tyrol. Mineralogical Magazine, 15, 156176.CrossRefGoogle Scholar
Britvin, S.A., Kashtanov, M.G., Krzhizhanovskaya, A., Gurinov, O.V., Glumov, S., Strekopytov, S., Kretser, L. Y., Zaitsev, A.N., Chukanov, N.V and Krivovichev, S. Y (2015) Perovskites with framework-forming xenon. Angewandte Chemie, 54, 1434014344.CrossRefGoogle ScholarPubMed
Britvin, S.A., Kashtanov, S.A., Krivovichev, S.V. and Chukanov, N.V. (2016) Xenon in rigid oxide frameworks: Structure, bonding and explosive properties of layered perovskite K4Xe3O12 . Journal of the American Chemical Society, 138, 1383813841.CrossRefGoogle ScholarPubMed
Bruce, D.W., O'Hare, D. and Walton, R.L. (2010) Functional Oxides. John Wiley & Sons, London, 304 pp.CrossRefGoogle Scholar
Burke, E.A.J. and Kieft, C. (1971) Second occurrence of macedonite, PbTiO3, Långban, Sweden. Lithos, 4, 101104.CrossRefGoogle Scholar
Buttner, R.H. and Maslen, E.N. (1992) Structural parameters and electron difference density in BaTiO3 . Acta Crystallograpica, B48, 764769.CrossRefGoogle Scholar
Byström, A. and Wilhelmi, K A. (19 50) The crystal structure of diaboleite Pb2Cu(OH)4Cl2. Arkiv Kemi, 2, 397–04.Google Scholar
Cao, H., Devreugd, C.P., Ge, W., Li, J., Viehland, D., Luo, H. and Zhao, X. (2009) Monoclinic Mc phase in (2001) field-cooled BaTiO3 single crystals. Applied Physics Letters, 94, 032901.CrossRefGoogle Scholar
Caracas, R. and Wentzcovitch, R.M. (2005) Equation of state and stability of CaSiO3 under pressure. Geophysical Research Letters, 32, L06303.Google Scholar
Carpenter, M.A., Sondergeld, P., Li, B., Liebermann, R. C., Walsh, J.W., Schreuer, J. and Darling, T.W. (2006) Structural evolution, strain and elasticity of perovskites at high pressures and temperatures. Journal of Mineralogical and Petrological Sciences IMA issue 1, 101, 95109.CrossRefGoogle Scholar
Chakhmouradian, A.R. and Mitchell, R.H. (1997) Compositional variation of perovskite-group minerals from carbonatite complexes of the Kola alkaline province, Russia. The Canadian Mineralogist, 35, 12931310.Google Scholar
Chakhmouradian, A.R. and Mitchell, R.H. (1998) A structural study of the perovskite series CaTi2 x FexNbxO3 . Journal of Solid State Chemistry, 138, 272277.CrossRefGoogle Scholar
Chakhmouradian, A.R. and Mitchell, R.H. (2001) Three compositional varieties ofperovskite from kimberlites of the Lac de Gras field (Northwest Territories, Canada). Mineralogical Magazine, 65, 133148.CrossRefGoogle Scholar
Chakhmouradian, A.R. and Mitchell, R.H. (2002) New data on pyrochlore-and perovskite-group minerals from the Lovozero alkaline complex, Russia. European Journal of Mineralogy, 14, 821836.CrossRefGoogle Scholar
Chakhmouradian, A.R. and Woodward, P.M. (2014) Celebrating 175 years of perovskite research: a tribute to Roger H. Mitchell. Physics and Chemistry of Minerals, 41, 387391.CrossRefGoogle Scholar
Chakhmouradian, A.R., Yakovenchuk, V., Mitchell, R.H. and Bogdanova, A. (1997) Isolueshite: a new mineral of the perovskite group from the Khibina alkaline complex. European Journal of Mineralogy, 9, 483–90.CrossRefGoogle Scholar
Chakhmouradian, A.R., Mitchell, R.H., Pankov, A.V. and Chukanov, N.V. (1999) Loparite and “metaloparite” from the Burpala alkaline complex, Baikal Alkaline Province (Russia). Mineralogical Magazine, 63, 519534.CrossRefGoogle Scholar
Chakhmouradian, A.R., Ross, K., Mitchell, R.H. and Swainson, I. (2001) The crystal chemistry of synthetic potassium-bearing neighborite Naj xMgxF3 . Physics and Chemistry of Minerals, 28, 277284.CrossRefGoogle Scholar
Chao, E.C.T., Evans, H.T., Skinner, B.J. and Milton, C. (1961) Neighborite, NaMgF3, a new mineral from the Green River Formation, South Ouray, Utah. American Mineralogist, 46, 379393.Google Scholar
Cheng, P., Yongsheng, N., Yuan, K. and Hong, J. (2013) Fast sonochemical synthesis of CoSn(OH)6 nano-cubes, conversion towards shape-preserved SnO2— Co3O4 hybrids and their photodegradation properties. Materials Letters, 90, 1922.CrossRefGoogle Scholar
Cheon, C.L., Joo, H.W., Chae, K.W., Kim, J.S., Lee, S.H., Torii, S. and Kamiyama, T (2015) Monoclinic ferroelectric NaNbO3 at room temperature: Crystal structure solved by using super high resolution neutron powder diffraction. Materials Letters, 156, 214219.CrossRefGoogle Scholar
Chesnokov, B.V and Bazhenova, L.F. (1985) Srebrodolskite, Ca2Fe2O5, a new mineral. Zapiski Vses Mineralogii Obshchestvo, 114, 195199.Google Scholar
Christy, A.G., Mills, S.J. and Kampf, A.R. (2016) A review of the structural architecture of tellurium oxycom-pounds. Mineralogical Magazine, 80, 415545.CrossRefGoogle Scholar
Cohen-Addad, C. (1968) Étude structurale des hydro-xystannates CaSn(OH)6 et ZnSn(OH)6 par diffraction neutronique, absorption infrarouge et resonance magnetique nucleaire. Bulletin Sociéte de France Mineralogie et Crystallographie, 91, 315324.CrossRefGoogle Scholar
Colville, A.A. and Geller, S. (1971) The crystal structure of brownmillerite Ca2FeAlO5. Acta Crystallographica, B27, 23112315.CrossRefGoogle Scholar
Colville, A.A. and Geller, S. (1972) Crystal structures of Ca2Fe1. 43Alo. 57O5 and Ca2Fe1. 28Al0. 72O5. Acta Crystallographica, B28, 31963200.CrossRefGoogle Scholar
Cooper, M.A. and Hawthorne, F.C. (1995) Diaboleite, Pb2Cu(OH)4Cl2, a defect perovskite structure with lone pair behaviour of Pb2+ . The Canadian Mineralogist, 33, 1125–129.Google Scholar
Cross, E.B. and Hillebrand, W.F. (1885) Minerals from the neighbourhood of Pikes Peak. U.S. Geological Survey Bulletin, 20, 4068.Google Scholar
Danø, M. and Sørenson, H. (1959) An examination of some rare minerals from the nepheline syenites of southwest Greenland. Meddelelser om Grønland, 162, 135.Google Scholar
Demartin, F., Campostrini, I., Castellano, C. and Russo, M. (2014) Parascandolaite, KMgF3, a new perovskite-type fluoride. Physics and Chemistry of Minerals, 41, 403407.CrossRefGoogle Scholar
Dobbe, R.T.M., Lustenhouwer, W. and Zakrzewski, M.A. (1994) Kieftite, CoSb3, a new member of the skutterudite group from Tunaberg, Sweden. The Canadian Mineralogist, 32, 179183.Google Scholar
Dunn, PI, Peacor, D.R., Valley, J.W. and Randell, C.A. (1985) Ganomalite from Franklin, New Jersey, and Jakobsberg, Sweden: new chemical and crystallo-graphic data. Mineralogical Magazine, 49, 579582.CrossRefGoogle Scholar
Fang, C.M. and Ahuja, R. (2006) Structures and stability of ABO3 orthorhombic perovskites at the Earth's mantle conditions from first-principles theory. Physics of the Earth and Planetary Interiors, 157, 17.CrossRefGoogle Scholar
Feldman, C. and Jansen, M. (1995) Ternary oxides containing anionic gold. Zeitschrifte für Anorganische und Allegemeine Chemie, 621, 201206.Google Scholar
Feng, D., Shivaramaiah, R. and Navrotsky, A. (2016) Rare earth perovskite along the join CaTiO3-Na0. 5La0. 5TiO3 join: Phase transformations, formation enthalpies, and implications for loparite minerals. American Mineralogist, 101, 2051–2016.CrossRefGoogle Scholar
Foord, E.E., O'Conner, IT, Hughes, J.M., Sutley, S.J., Falster, A.V., Soregaroli, A.E., Lichte, F and Kile, D. E. (1999) Simmonsite, Na2LiAlF6, a new mineral from the Zapot amazonite-topaz-zinnwaldite pegmatite, Hawthorne, Nevada, USA. American Mineralogist, 84, 769772.CrossRefGoogle Scholar
Frondel, C. (1948) New data on elpasolite and hageman-nite. American Mineralogist, 33, 8487.Google Scholar
Galasso, F.S. (1990) Perovskites and High Tc Superconductors. Gordon & Breach Science Publications, New York.Google Scholar
Galuskin, E.V., Gazeev, V.M., Armbruster, T., Zadov, A. E., Galuskina, I.O., Pertsev, N.N., Dzierzanowski, P., Kadiyski, M., Gurbanov, A.G., Wrzalik, R. and Winiarski, A. (2008) Lakargiite, CaZrO3: A new mineral of the perovskite group from the North Caucasus, Kabardino-Balkaria, Russia. American Mineralogist, 93, 19031910.CrossRefGoogle Scholar
Galuskin, E.V. Galuskina, I.O., Gazeev, V.M., Dzierzanowski, P., Prusik, K., Pertsev, N.N., Zadov, A.E., Bailau, R. and Gubanov, A.G. (2011) Megawite, CaSnO3: A new perovskite-group mineral from skarns of the Upper Chegem-caldera, Kabardino-Balkaria, Northern Caucasus, Russia. Mineralogical Magazine, 75, 25632572.CrossRefGoogle Scholar
Galuskin, E.V., Galuskina, I.O., Kusz, J., Armbruster, T., Marzec, K., Dzierzanowski, P. and Murasko, M. (2014) Vapnikite Ca3UO6-a new double perovskite mineral from pyrometamorphic larnite rocks of the Jebel Harum, Palestine Autonomy, Israel. Mineralogical Magazine, 78, 571581.CrossRefGoogle Scholar
Gasparik, T., Wolf, K. and Smith, C.M. (1994) Experimental determinations of phase relations in the CaSiO3 system from 8 to 15 GPa. American Mineralogist, 79, 12191222.Google Scholar
Geller, S. (1956) Crystal structure of gadolinium ortho-ferrite, GdFeO3 . Journal of Chemical Physics, 24, 12361239.CrossRefGoogle Scholar
Genkin, A.D. and Murav'eva, L.V. (1964) Indite and dzhalindite: new indium minerals. American Mineralogist, 49, 439.Google Scholar
Glazer, A.M. (1972) The classification of tilted octahedra in perovskites. Acta Crystallographica, B28, 33843392.CrossRefGoogle Scholar
Goldschmidt, V.M. (1926) Geochemische Verteilungssgesetze der Elementer VII. Skrifter der Norske Videnskaps Akademi Klasse 1. Matematisk Naurvidenskaplig Klasse. Oslo, Norway.Google Scholar
Gross, S. (1977) The mineralogy of the Hatrurim Formation, Israel. Geological Survey of Israel Bulletin, 70, 180.Google Scholar
Kaur, Gurmeet and Mitchell, R.H. (2013) Mineralogy of the P2-West “kimberlite”, Wajrakarur kimberlite field, Andra Pradesh, India: kimberlite or lamproite. Mineralogical Magazine, 77, 31753196.CrossRefGoogle Scholar
Haggerty, S.E. and Mariano, A.N. (1983) Srontian-loparite and strontio-chevkinite: Two new minerals in rheomorphic fenites from the Paraná Basin carbonatites. Contributions to Mineralogy and Petrology, 84, 365381.CrossRefGoogle Scholar
Haidinger, W. (1845) Handbuch der bestimmenden Mineralogie, enthaltend die Terminologie, Systematik, Nomenklatur und Charakteristik der Naturgeschischte des Mineralreiches. Braumuller & Seidel, Vienna, 550 pp.Google Scholar
Hålenius, U., Hatert, T., Pasero, M. and Mills, S.J. (2016) CNMNC Newsletter No. 30, April 2016, page 413. Mineralogical Magazine, 80, 407–13.CrossRefGoogle Scholar
Hansen, W.C., Brownmiller, L.T. and Bogue, R.H. (1928) Studies on the system calcium oxide—alumina—ferric oxide. Journal of the American Chemical Society, 50, 396406.CrossRefGoogle Scholar
Hatert, F., Mills, S.J., Pasero, M. and Williams, P.A. (2013) CNMNC guidelines for the use of suffixes and prefixes in mineral nomenclature, and the preservation of mineral names. European Journal ofMinealogy, 25, 113115.CrossRefGoogle Scholar
Hawthorne, F.C. and Ferguson, R.B. (1975) Refinement of the crystal structure of cryolite. The Canadian Mineralogist, 13, 377382.Google Scholar
Hentschel, G.M. (1964) Myerit, 12CaO.7Al2O3 und Brown milllerit, 2CaO(Al,Fe)203, zwei neue Minerale in der Lavas des Ettinger Bellerberges. Neues Jahrbuch für Mineralogie Monatshefte, 1964, 2229.Google Scholar
Hermann, P., Vandenstetten, R. and Hubaux, A. (1960) Sublimés du Nyiragongo (Kivu). Bulletin des Séances de l’Academie Royal des Sciences d'Outr-mer, 6, 961971.Google Scholar
Hewat, A.W. (1974) Neutron powder profile refinement of ferroelectric and antiferroelectric crystal structures — sodium niobate at 22°C. Ferroelectrics, 7, 8385.CrossRefGoogle Scholar
Hidden, W.E. and MacKintosh, A. (1888) Sulphohalite, a new sodian sulphato-chloride. American Journal of Science, 3rd Series, 36, 463.Google Scholar
Hirose, K. (2014) Deep Earth mineralogy revealed by ultrahigh-pressure experiments. Mineralogical Magazine, 78, 437446.CrossRefGoogle Scholar
Howard, C.J. and Stokes, H.T. (1998) Group theoretical analysis of octahedral tilting in perovskites. Acta Crystallographica, B54, 782789.CrossRefGoogle Scholar
Howard, C.J. and Stokes, H.T. (2002) Group theoretical analysis of octahedral tilting in perovskites. Erratum. Acta Crystallographica, B58, 565.CrossRefGoogle Scholar
Howard, C.J. and Stokes, H.T. (2004) Octahedral tilting in cation-ordered perovskites — a group-theoretical analysis. Acta Crystallographica, B60, 674684.CrossRefGoogle Scholar
Howard, C.J. and Stokes, H.T. (2005) Structures and phase transitions in perovskites a group theoretical approach. Acta Crystallographica, A61, 93111.CrossRefGoogle Scholar
Howard, C.J., Kennedy, B.J. and Woodward, P.M. (2003) Ordered double perovskites — a group theoretical analysis. Acta Crystallographica, B59, 463471.CrossRefGoogle Scholar
Hu, M., Wenk, H.R. and Sinitsyna, D. (1992) Microstructures in natural perovskites. American Mineralogist, 77, 359373.Google Scholar
Hutton, J. andNelmes, R.J. (1981) High resolution studies of cubic perovskite by elastic neutron diffraction. Acta Crystallographica, A37, 916920.CrossRefGoogle Scholar
Ishizawa, N., Marumo, F., Iwai, S., Kimura, M. and Kawamura, T. (1980) Compounds with perovskite-like slabs III. The structure of a monoclinic modification of Ca2Nb2O7. Acta Crystallographica, B36, 763766.CrossRefGoogle Scholar
Jackson, I. and Rigden, S.M. (1998) Composition and temperature of the Earth's mantle: seismological models interpreted through experimental studies of Earth Materials. Pp. 404460 in: The Earth's Mantle: Composition, Structure and Evolution (I. Jackson, editor). Cambridge University Press, UK.CrossRefGoogle Scholar
Jacobsen, M.J., Balic-Zunic, T., Mitolo, D., Katerinopoulou, A., Garavelli, A. and Jakobsson, S. P. (2014) Oskarssonite, AlF3, anew fumarolic mineral from Eldfell volcano, Heimaey, Iceland. Mineralogical Magazine, 78, 215222.CrossRefGoogle Scholar
Jeitschko, W and Braun, D.J. (1977) LaFe4P12 filled with CoAs3-type structure and isotypic lanthanoid-transition metal polyphosphides. Acta Crystallographica, B33, 34013406.CrossRefGoogle Scholar
Johansson, K. (1928) Hematophanite. Zeitschrifte fur Kristallographie, 18, 87118.Google Scholar
Johnson, K.E. Tang, C.C., Parker, J.E., Knight, K.S., Lightfoot, P. and Ashbrook, S.E. (2010) The polar phase of NaNbO3: a combined study by powder diffraction, solid state NMR and first principles calculations. Journal of the American Chemical Society, 132, 87328746.CrossRefGoogle Scholar
Kahlenberg, V., Fischer, R.X. and Shaw, C.S.J. (2000) Rietveld analysis of dicalcium aluminate (Ca2Al2O5) — a new high-pressure phase with brownmillerite-type structure. European Journal of Mineralogy, 85, 10611065.Google Scholar
Kaldos, R., Guzmics, T., Mitchell, R.H., Dawson, J.B., Milke, R. and Szabo, C. (2015) A melt evolution model for Kerimasi volcano, Tanzania: Evidence from carbonate melt inclusions in jacupirangite. Lithos, 238, 101119.CrossRefGoogle Scholar
Kaminsky, F.V., Zakarchenko, O.D., Davies, R., Griffin, W.L., Khachtryan-Blinova, G.K. and Shiryaev, A.A. (2001) Super-deep diamonds from the Juina area, Mato Grosso State, Brazil. Contributions to Mineralogy and Petrology, 140, 734753.CrossRefGoogle Scholar
Kaminsky, F.V., Wirth, R. and Schreiber, A. (2015) A microinclusion of lower-mantle rock and other minerals and nitrogen lower mantle inclusions in a diamond. The Canadian Mineralogist, 53, 83104.CrossRefGoogle Scholar
Kaminsky, V., Ryabchikov, I.D. and Wirth, R. (2016) A primary natrocarbonatitic association in the Deep Earth. Mineralogy and Petrology, 110, 387398.CrossRefGoogle Scholar
Kampf, A.R. (1982) Jeanbandyite, a new member of the stottite group from Llallagua, Bolivia. Mineralogical Record, 13, 235239.Google Scholar
Kay, H.F. and Bailey, P.C. (1957) Structure and properties of CaTiO3 . Acta Crystallographica, A10, 219226.CrossRefGoogle Scholar
Kimura, S. and Muan, A. (1971a) Phase relationships in the system CaO-iron oxide-TiO2 in air. American Mineralogist, 56, 13331346.Google Scholar
Kimura, S. and Muan, A. (1971b) Phase relationships in the system CaO-iron oxide-TiO2 under strongly reducing conditions. American Mineralogist, 56, 13471358.Google Scholar
Kiseleva, G.D., Kovalenko, V.A., Trubkin, N.V., Borisovsky, S.E. and Mokhov, A.V. (2008) Rare minerals of In, Cd, Mo, and W in gold-base metal veins of the Bugdaya Au-Mo(W)-porphyry deposit, Eastern Transbaikalia, Russia. Russian Academy of Sciences Fersman Mineralogical Museum New Data on Minerals, 43, 1322.Google Scholar
Kleppe, A.K., Welch, M.D., Crichton, W.A. and Jephcoat, A.P. (2012) Phase transitions in hydroxide perovskites: a Raman study of FeGe(OH)6 stottite to 21 GPa. Mineralogical Magazine, 76, 949962.CrossRefGoogle Scholar
Knight, K.S. and Kennedy, B.J. (2015) Phase coexistence in NaTaO3 at room temperature: a high resolution neutron powder diffraction study. Solid State Sciences, 43, 1521.CrossRefGoogle Scholar
Kodera, P., Takács, Á., Racek, M., Šhimko, F., Lupatakova, I, Váczi, T. and Antal, P. (2016) Javorieite. IMA 2016-020 CNMNC Newsletter No. 32, August 2016, page 917. Mineralogical Magazine, 80, 915922.Google Scholar
Koopmans, H.J.A., van de Velde, G.M.H. and Gellings, P. J. (1983) Powder neutron diffraction study of the perovskites CaTiO3 and CaZrO3 . Acta Crystallographica, C39, 13231325.Google Scholar
Knyzazev, A.V. Chernorukov, N.G., Dashkina, Z.S., Bulanov, E.N. and Ladenkov, I.V. (2011) Synthesis, structures, physicochemical properties, and crystal-chemical systematics of MI I2AIIUO6 (MII = Pb, Ba, Sr; AII = Mg, Ca, Sr, Ba, Mn, Fe, Co, Ni, Cu, Zn, Cs, Pb) compounds. Russian Journal of Inorganic Chemistry, 56, 888898.CrossRefGoogle Scholar
Kramer, J.W., Kelly, B. and Manivannan, Y (2010) Synthesis of MSn(OH)6 (where M = Mg, Ca, Zn, Mn, or Cu) materials at room temperature. Central European Journal of Chemistry, 8, 6569.Google Scholar
Krenner, J.A. (1883) Die Gronlandischen minerale der kryolithgruppe. Mathematisk Naturwissenschaften Berichten aus Ungarn, 1, 151172.Google Scholar
Krivovichev, S.V. (2008) Minerals with the antiperovskite structure: a review. Zeitschrift für Kristallographie, 223, 109115.Google Scholar
Krivovichev, S.V., Chakhmouradian, A.R., Mitchell, R. H., Filatov, S.K. and Chukanov, N.V. (2000) Crystal structure of isolueshite and its synthetic compositional analogue. European Journal of Mineralogy, 12, 597607.CrossRefGoogle Scholar
Kuznetsov, I.G. (1925) Loparite a new rare earth mineral from the Khibina Tundra. Izvestia Geologicheskogo Komiteta, 44, 663682 [in Russian].Google Scholar
Kwei, G.H., Lawson, A.C., Billings, S.J.L. and Cheong, S. W. (1993) Structures of the ferroelectric phases of barium titanate. Journal of Physical Chemistry, 97, 23682377.CrossRefGoogle Scholar
Lafuente, B., Yang, H. and Downes, R.T (2015) Crystal structure of tetrawickmanite Mn2+Sn4+(OH)6 . Acta Crystallographica, E71, 234237.Google Scholar
Le Bail, A. and Calvayrac, F. (2006) Hypothetical AlF3 crystal structures. Journal of Solid State Chemistry, 179, 31593166.CrossRefGoogle Scholar
Levin, I. and Bendersky, L.A. (1999) Symmetry classification of the layered perovskite-derived AnBnX3n+ 2 structures. Acta Crystallographica, B55, 853866.CrossRefGoogle Scholar
Levin, I., Bendersky, L.A. and Vanderah, T.A. (2000) A structural study of the layered perovskite-derived Srn(NbTi)nO3n+2 compounds by TEM. Philosophical Magazine, 80, 411446.CrossRefGoogle Scholar
Lewandowski, J.T., Pickering, I.J. and Jacobson, A.J. (1992) Hydrothermal synthesis of calcium-niobium and tantalum oxides with the pyrochlore structure. Materials Research Bulletin, 27, 981988.CrossRefGoogle Scholar
Liu, L.G. (1976) Orthorhombic perovskite phases observed in olivine, pyroxene and garnet at high pressures and temperatures. Physics of the Earth and Planetary Interiors, 11, 289298.CrossRefGoogle Scholar
Liu, L.G. and Ringwood, A.E. (1975) Synthesis of a perovskite-type polymorph of CaSiO3 . Earth and Planetary Science Letters, 28, 209211.CrossRefGoogle Scholar
Lufaso, M.W. and Woodward, P.M. (2004) Jahn-Teller distortions, cation ordering and octahedral tilting in perovskites. Acta Crystallographica, B60, 1020.CrossRefGoogle Scholar
Lufaso, M.W., Barnes, P.W and Woodward, P.M. (2006) Structure prediction of ordered perovskites and disordered multiple octahedral cation perovskites usin. SPuDs. Acta Crystallographica, B62, 397410.Google Scholar
Lumpkin, G.R. (2014) The role of Th-U minerals in assessing the performance of nuclear waste forms. Mineralogical Magazine, 78, 10711095.CrossRefGoogle Scholar
Luo, H., Krizan, J.W., Muechler, L., Haldolaarachige, N., Klimczuk, T., Xie, W., Fucillo, M.K., Felser, K. and Cava, R.J. (2014) A large family of filled skutterudites stabilized by electron count. Nature Communications, 6, Article 6489.Google Scholar
Ma, C. (2011) Discovery of meteoritic lakargiite (CaZrO3); a new ultra refractory mineral from the ACFER 094 carbonaceous chondrite. Meteoritical Society 74th Annual Meeting, abstract 5169.Google Scholar
Ma, C. and Rossman, G.R. (2008) Barioperovskite, BaTiO3, a new mineral from the Benitoite Mine, California. American Mineralogist, 93, 154157.CrossRefGoogle Scholar
Marshukova, N.K., Sidorenko, G.A. and Chistyakova, N.I. (1978) New data on hydrostannates. Russian Academy of Science Fersman Mineralogical Museum New Data on Minerals of the U.S.S.R., 27, 8995.Google Scholar
Marshukova, N.K., Pavlovskii, A.B. and Sidorenko, G.A. and Chistyakova, N.I. (1981) Vismirnovite, ZnSn (OH)6 and natanite FeSn(OH)6, new tin minerals. Zapiski Vsesoyusnogo Mineralogicheskogo Obshchestva, 110, 492500.Google Scholar
Marshukova, N.K., Pavlovskii, A.B., and Sidorenko, G.A. (1984) Mushistonite (Cu,Zn,Fe)Sn(OH)6-a new tin mineral. Zapiski Vsesoyusnogo Mineralogicheskogo Obshchestva, 113, 612617.Google Scholar
Matsui, M., Komatsu, K., Ikeda, E., Sano-Furukawa, A., Gotou, H. and Yagi, T. (2011) The crystal structure of δ-Al(OH)3: Neutron diffraction measurements and ab initio calculations. American Mineralogist, 96, 854859.CrossRefGoogle Scholar
McCammon, C.A., Pring, A., Keppler, H. and Sharp, T.A. (1995) A study of bernalite, Fe(OH)3, using Mössbauer spectroscopy, optical spectroscopy, and transmission electron microscopy. Physics and Chemistry of Minerals, 22, 1120.CrossRefGoogle Scholar
McDonald, A.M., Back, M.E., Gault, R.A. and Horváth, L. (2013) Peatite-(Y) and ramikite-(Y), two new Na-Li-Y±Zr phosphate-carbonate minerals from the Poudrette Pegmatite, Mont Saint-Hilaire, Quebec. The Canadian Mineralogist, 51, 569596.CrossRefGoogle Scholar
McPherson, G.J., Simon, S.B., Davis, A.M., Grossman, L. and Krot, A.N. (2005) Calcium aluminum-rich inclusions: Major unanswered questions. Pp. 225250, in Chondrites and the Protoplanetary Disk (A.N. Krot, A.N. Scott and B. Reipurth, editors). Astronomical Society of the Pacific Conference Papers, 341.Google Scholar
Megaw, H.D. (1946) Crystal structures of double oxides of the perovskite type. Proceedings of the Philosophical Society of London, 58, 133152.CrossRefGoogle Scholar
Megaw, H.D. (1968) A simple theory of the off-centre displacements of cations in octahedral environments. Acta Crystallographica, B24, 149153.CrossRefGoogle Scholar
Megaw, H.D. (1973) Crystal structures: A working approach. W.B. Saunders Co., Philadelphia, USA.Google Scholar
Menezes Filho, L.A.D., Atencio, D., Andrade, M.B., Downs, R.T., Chaves, M.L.S.C., Romano, A.W., Scholz, R. and Persiano, A.I.C. (2015) Pauloabibite, trigonal NaNbO3, isostructural with ilmenite, from the Jacupiranga carbonatite, Cajati, São Paulo, Brazil. American Mineralogist, 100, 442446.CrossRefGoogle Scholar
Midorikawa, M., Ishibashi, Y. and Takagi, M. (1979) Optical and dilatometric studies of KCaCl3 and RbCaCl3 . Journal of the Physics Society of Japan, 46, 12401244.CrossRefGoogle Scholar
Mihalik, P. Hienstra, S.A. and de Villiers, J.P.R. (1975) Two new platinum group minerals from the Merensky Reef, Bushveld igneous complex. The Canadian Mineralogist, 13, 146150.Google Scholar
Mitchell, R.H. (1997) Carbonate-carbonate immiscibility, neighborite and potassium iron sulphide in Oldoinyo Lengai natrocarbonatite. Mineralogical Magazine, 61, 779789.CrossRefGoogle Scholar
Mitchell, R.H. (2002) Perovskites: Modern and Ancient. Almaz Press, Thunder Bay (http://www.almazpress.com)Google Scholar
Mitchell, R.H. and Chakhmouradian, A.R. (1996) Compositional variation of loparite from the Lovozero alkaline complex, Russia. The Canadian Mineralogist, 34, 977990.Google Scholar
Mitchell, R.H. and Chakhmouradian, A.R. (1998) Th-rich loparite from the Khibina complex, Kola Peninsula: Isomorphism and paragenesis. Mineralogical Magazine, 62, 341353.CrossRefGoogle Scholar
Mitchell, R.H. and Liferovich, R.P. (2005) A structural study of the perovskite series Na0. 75Ln0. 25Ti0 5Nb0 5O3 . Journal of Solid State Chemistry, 178, 25862593.CrossRefGoogle Scholar
Mitchell, R.H. and Mariano, A.N. (2016) Primary phases in alumious slags produced by the aluminothermic reduction of pyrochlore. Mineralogical Magazine, 80, 383397.CrossRefGoogle Scholar
Mitchell, R.H. and Vladykin, N.V (1993) Rare earth element-bearing tausonite and potassium barium titanites from the Little Murun potassic alkaline complex, Yakutia, Russia. Mineralogical Magazine, 57, 651664.CrossRefGoogle Scholar
Mitchell, R.H., Chakhmouradian, A.R. and Yakovenchuk, V.N. (1996) Nioboloparite: a re-investigation and discreditation. The Canadian Mineralogist, 34, 991999.Google Scholar
Mitchell, R.H., Choi, J.B., Hawthorne, F.C., McCammon, C.A. and Burns, P.C. (1998) Latrappite: a re-investigation. The Canadian Mineralogist, 36, 107116.Google Scholar
Mitchell, R.H., Chakhmouradian, A.R. and Woodward, P. M. (2000a) Crystal chemistry of perovskite-compounds in the tausonite loparite series (Srj xNaxLax)TiO3. Physics and Chemistry of Minerals, 27, 583589.CrossRefGoogle Scholar
Mitchell, R.H., Burns, P.C. and Chakhmouradian, A.R. (2000b) The crystal structures of loparite-(Ce). The Canadian Mineralogist, 38, 145152.CrossRefGoogle Scholar
Mitchell, R.H., Burns, P.C., Chakhmouradian, A.R. and Levin, I. (2002) The crystal structures of lueshite and NaNbO3. International Mineralogical Association Meeting, Edinburgh, Scotland, Abstract A 9–5.Google Scholar
Mitchell, R.H., Cranswick, L.M.D. and Swainson, I. (2006) Neutron diffraction determination of the cell dimensions and thermal expansion of the fluoro-perovskite KMgF3 from 293 to 3.6 K. Physics and Chemistry of Minerals, 33, 587591.CrossRefGoogle Scholar
Mitchell, R.H., Burns, EC, Knight, K.S., Howard, C.J. and Chakhmouradian, A.R. (2014) Observations on the crystal structures of lueshite. Physics and Chemistry of Minerals, 41, 393401.CrossRefGoogle Scholar
Miyajima, H., Miyawaki, R. and Ito, K. (2002) Matsubaraite, Sr4Ti5(Si2O7)2O8, a new mineral, the Sr-Ti analogue of perrierite from the Itoigawa-Ohmi district, Niigata Prefecture, Japan. European Journal of Mineralogy, 14, 11191128.CrossRefGoogle Scholar
Morgenstern-Badarau, I. (1976) Effet Jahn-Teller et structure cristalline de l'hydroxyde CuSn(OH)6 . Journal of Solid State Chemistry, 17, 399400.CrossRefGoogle Scholar
Mullica, D.F., Beall, G.W. and Milligan, W.O. (1979) The crystal structure of cubic In(OH)3 by X-ray and neutron diffraction methods. Journal of Inorganic and Nuclear Chemistry, 41, 277282.CrossRefGoogle Scholar
Murakami, M., Hirose, K., Kawamura, K., Sata, N. and Ohishi, Y (2004) Post-perovskite phase transition in MgSiO3 . Science, 304, 855858.CrossRefGoogle ScholarPubMed
Nakayama, N., Kosuge, K. and Kachi, S. (1977) Magnetic properties of FeSn(OH)6 and its oxidation product FeSnO(OH)5 . Materials Research Bulletin, 13, 1722.CrossRefGoogle Scholar
Nanot, M., Queyroux, F., Gilles, J.C., Portier, R. and Fayard, M. (1975) Étude par diffraction X et microscopie electronique de composés inedits de formule AnBnO3n + 2 dans les systems La2Ti2O7 CaTiO3, Nd2Ti2O7-CaTiO3 et Ca2Nb2O7-CaTiO3 . Materials Research Bulletin, 10, 313318.CrossRefGoogle Scholar
Náray-Szabó, S.V. (1943) Der strukturtyp des Perowskites (CaTiO3). Naturwissenschaften, 31, 202203.CrossRefGoogle Scholar
Náray-Szabó, S.V. and Sasvari, K. (1938) Die struktur des Kryoliths Na3AlF6 . Zeitschrift für Kristallographie, 99, 2731.Google Scholar
Nefedov, E.I., Griffin, W.L. and Kristiansen, R. (1977) Minerals of the schoenfliesite wickmanite series from Pitkäranta, Karelia, USSR. The Canadian Mineralogist, 15, 437445.Google Scholar
Nelmes, R.J. and Kuhs, W.F. (1985) The crystal structure of tetragonal PbTiO3 at room temperature and at 700 K. Solid State Communications, 54, 721723.CrossRefGoogle Scholar
Nickel, E.H. (1964) Latrappite — a proposed new mineral name for the perovskite-type calcium niobate mineral from the Oka area of Québec. The Canadian Mineralogist, 8, 121122.Google Scholar
Nickel, E.H. and McAdam, R.C. (1963) Niobian perovskite from the Oka, Québec, a new classification for minerals of the perovskite group. The Canadian Mineralogist, 7, 683697.Google Scholar
Nickel, E.H. and Grice, J. (1998) The IMA Commission on New Minerals and Mineral Names: Procedures and guidelines on mineral nomenclature, 1998. The Canadian Mineralogist, 36, 913926.Google Scholar
Nielson, J.R., Kurzman, J.A., Seshadri, R. and Morse, D. E. (2011) Ordering double perovskite hydroxides by kinetically controlled aqueous hydrolysis. Inorganic Chemistry, 50, 30033009.CrossRefGoogle Scholar
Oganov, A.R. and Ono, S. (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D” layer. Nature, 430, 445448.CrossRefGoogle ScholarPubMed
Oskarsson, N. (1981) The chemistry of Icelandic lava incrustations and the latest stages of degassing. Journal of Volcanology and Geothermal Research, 10, 93111.CrossRefGoogle Scholar
Pabst, A. (1934) The crystal structure of sulphohalite. Zeitscrift fur Kristallographie, 89, 514517.Google Scholar
Palache, C., Berman, H. and Frondel, F. (1951) The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana. Volume II, 7th edition, pp. 9192. John Wiley and Sons, New York.Google Scholar
Pauly, H. (1969) White cast iron with cohenite schrei-bersite and sulphides from Tertiary basalts on Disko. Meddeleserfra Dansk Geologisk Forening, 19, 2628.Google Scholar
Peel, M.D., Thompson, S.P., Daoud-Aladine, A., Ashbrook, S.E. and Lightfoot, P. (2012) New twists on the perovskite theme: Crystal structures of the elusive phases R and S of NaNbO3 . Inorganic Chemistry, 51, 68766889.CrossRefGoogle ScholarPubMed
Portier, R., Fayard, M., Carpy, A. and Galy, J. (1974) Étude par microscopie électronique de quelques termes de la serie (Na,Ca)nNbnO3n + 2 . Materials Research Bulletin, 9, 371378.CrossRefGoogle Scholar
Qi, R.Y. and Corbett, J.D. (1995) Cs3Zr6Br15Z (Z = C,B): a stuffed rhombohedral perovskite structure of linked clusters. Inorganic Chemistry, 34, 16571662.CrossRefGoogle Scholar
Radusinovic, D. and Makov, C. (1971) Macedonite-lead titanate: A new mineral. American Mineralogist, 56, 387394.Google Scholar
Ramsay, W (1897) Das Nephelinesyenitgebiet auf der Halbinsel Kola II. Fennia, 15, 115.Google Scholar
Ramsay, W and Hackman, Y (1894) Das Nephelinesyenitgebiet auf der Halbinsel Kola I. Fennia, 11, 1225.Google Scholar
Ranjan, R., Agrawal, A. Senyshyn, A. and Boysen, H. (2006) Phases in the system Na,/2Nd,/2Ti03-SrTiO3: a powder neutron diffraction study. Journal of Physics: Condensed Matter, 18, 96799689.Google Scholar
Rappenglück, M.A., Bauer, F., Hiltl, M., Neumair, A. and Ernstson, K (2013) Calcium-aluminum-rich inclusions (CAIs) in iron silicide (xifengite, gupeite, hapkeite) matter: evidence of a cosmic origin. Meteoritics and Planetary Science, 48 issue s1, abstract #5055.Google Scholar
Redfern, S.A.T (1996) High-temperature phase transi-tions in perovskite (CaTiO3). Journal of Physics of Condensed Matter, 8, 82678275.CrossRefGoogle Scholar
Redhammer, G.J., Tippelt, G., Roth, G. and Amthauer, G. (2004) Structural variations in the brownmillerite series Ca2(Vs2_xA\1-O5: Single-crystal X-ray diffraction at 25°C and high-temperature X-ray powder diffraction (25°C < T < 1000°C). American Mineralogist, 89, 405420.CrossRefGoogle Scholar
Ringwod, A.E. (1985) Disposal of high level nuclear wastes: Geological perspectives. Mineralogical Magazine, 49, 159176.CrossRefGoogle Scholar
Ringwood, A.E. (1991) Phase transformations and their bearing on the constitution and dynamics of the mantle. Geochimica et Cosmochimica Acta, 55, 20832110.CrossRefGoogle Scholar
Rodrígues-Carvajal, J., Valett-Regí, M. and González-Calbert, J.M. (1989) Perovskite three-fold super-lattices: a structure determination of the A3M3O8 phase. Materials Research Bulletin, 24, 423430.CrossRefGoogle Scholar
Rosa, D. and Martin, R.F (2010) A spurrite-, merwinite-and srebrodolskite-bearing skarn assemblage, West Clearwater Lake impact crater, northern Quebec. The Canadian Mineralogist, 48, 15191532.CrossRefGoogle Scholar
Rose, G. (1839) Beschreibung einiger neuer Mineralien vom Ural. Pogendorff Annalen der Physik und Chemie, 48, 551572.CrossRefGoogle Scholar
Rosenberg, P.E. (1988) Aluminum fluoride hydrates, volcanogenic salts from Mount Erebus, Antarctica. American Mineralogist, 73, 855860.Google Scholar
Ross II, C.R., Bernstein, L.R. and Waychunas, G.A. (1988) Crystal structure refinement of stottite FeGe (OH)6 . American Mineralogist, 73, 657661.Google Scholar
Ross, K.C., Mitchell, R.H. and Chakhmouradian, A.R. (2003) The crystal structure of synthetic simmonsite, Na2LiAlF6. Journal of Solid State Chemistry, 172, 95101.CrossRefGoogle Scholar
Rouse, R.C. (1971) The crystal chemistry of diaboleite. Zeitschriftfür Kristallographie, 134, 6980.Google Scholar
Rouse, R.C. (1973) Hematophanite, a derivative of the perovskite structure. Mineralogical Magazine, 39, 4953.CrossRefGoogle Scholar
Sabelli, C. (1987) Structure refinement of elpasolite from Cetrine Mine, Tuscany, Italy. Neues Jahrbuch für Mineralogie, 1987, 481487.Google Scholar
Safianikoff, A. (1959) Un nouveau minéral de niobium. Academe des SeancesRoyale de l'Outre-mer Bulletin, 5, 12511255.Google Scholar
Sakowski-Cowley, A.C., Lukaszewicz, K. and Megaw, H. D. (1969) The structure of sodium niobate at room temperature, and the problem of reliability in pseudo-symmetric structure. Acta Crystallographica, 25, 851865.CrossRefGoogle Scholar
Sanematsu, K., Ehma, T., Kon, Y., Manaka, T., Zaw, K., Morita, S. and Seo, Y., (2016) Fractionation of rare-earth elements during magmatic differentiation and weathering of calc-alkaline granites in southern Myanmar. Mineralogical Magazine, 80, 77102.CrossRefGoogle Scholar
Sasaki, S., Prewitt, C.T and Liebermann, R.C. (1987) The crystal structure of CaGeO3 perovskite and the crystal chemistry of GdFeO3-type perovskites. American Mineralogist, 68, 11891198.Google Scholar
Scheunemann, K. and Müller-Buschbaum, H.K. (1974) Zur Kristallstruktur von Ca2Nb2O7 . Journal of Inorganic and Nuclear Chemistry, 36, 19651970.CrossRefGoogle Scholar
Schubert, K. and Seitz, A. (1948) Kristallstruktur von Sc (OH)3 and In(OH)3 . Zeitschrifte für Anorganische und Allegemeine Chemie, 256, 226238.CrossRefGoogle Scholar
Scott, J.D. (1971) Crystal structure of a new mineral, söhngeite. American Mineralogist, 56, 355.Google Scholar
Seltman, R., Soloviev, S., Shatov, V., Piranjo, F., Naumov, E. and Cerkasov, S. (2010) Metallogeny of Siberia: tectonic, geologic and metallogenic settings of selected significant deposits. Australian Journal of Earth Sciences, 57, 655706.CrossRefGoogle Scholar
Shan, YI, Nakamura, T., Inaguma, Y and Itoh, M. (1998) Preparation and dielectric properties of the novel perovskite-type oxides (Ln/2Na1/2)TiO3 (Ln = Dy, Ho, Er, Tm, Yb, Lu). Solid State Ionics, 108, 123128.CrossRefGoogle Scholar
Sharygin, V.V., Sokol, E.V and Vapnik, Y (2008) Minerals of the pseudobinary perovskite-brownmillerite series from combustion metamorphic larnite-rocks of the Hatrurim Formation (Israel). Russian Geology and Geophysics, 49, 709726.CrossRefGoogle Scholar
Sharygin, YY, Lazic, B., Armbruster, T.M., Murashko, M.N., Wirth, R., Galuskina, I.O., Galuskin, E.V., Vapnik, Y., Britvin, S.N. and Logvinova, A.M. (2013) Shulamitite Ca3TiFe3+AlO8-a new perovskite-related mineral from the Hatrurim Basin, Israel. European Journal of Mineralogy, 25, 97111.CrossRefGoogle Scholar
Shcheka, S.S. and Keppler, H. (2012) The origin of the terrestrial noble gas signature. Nature, 490, 531535.CrossRefGoogle ScholarPubMed
Sleight, A.W. (1963) . study of the incidence of the ordered perovskite structure. PhD Thesis, University of Connecticut, USA.Google Scholar
Sokol, E.V., Gaskova, O.L., Kokh, S.N., Kozmenko, O. A., Seryotkin, Y.S., Vapnik, Y and Murashko, M.N. (2011) Chromatite and its Cr3+-and Cr6+-bearing precursor minerals from the Nabi Musa Mottled Zone Complex. Judean Desert. American Mineralogist, 96, 659674.CrossRefGoogle Scholar
Spencer, L.J. and Mountain, E.D. (1923) Diaboleite. Mineralogical Magazine, 20, 7680.Google Scholar
Smith, C.B., Allsopp, H.L., Gravie, O.G., Kramers, J.D., Jackson, F.S. and Clement, C.R.C. (1989) Note on the U-Pb perovskite method for dating kimberlites: Examples from the Wesselton and De Beers mines, South Africa and Somerset Island, Canada. Chemical Geology, 79, 137145.Google Scholar
Spiridonov, E.M. and Gritsenko, Y.D. (2007) Ferroskutterudite, nickelskutterudite and skutterudite from the Norilsk Ore Field. Russian Academy of Science Fersman Mineralogical Museum, New data on Minerals, 42, 1627.Google Scholar
Spiridonov, E.M., Gritsenko, Y.D. and Kulikova, I.M. (2007) Ferroskutterudite (Fe,Co)As3: A new mineral species from the dolomite-calcite veins of the Norilsk Ore Field. Doklady Akademi Nauk Earth Sciences Section, 417, 242244.Google Scholar
Stachel, T., Harris, J.W., Brey, G.P. and Joswig, W. (2000) Kankan diamonds (Guinea) II: lower mantle inclusion parageneses. Contributions to Mineralogy and Petrology, 140, 1627.CrossRefGoogle Scholar
Stokes, H.T., Kisi, E.H., Hatch, D.M. and Howard, C.J. (2002) Group theoretical analysis of octahedral tilting in ferroelectric perovskites. Acta Crystallographica, B58, 934936.CrossRefGoogle Scholar
Strunz, H. and Contag, B. (1960) Hexahydroxystannate [Fe, Mn, Co, Mg, Ca,]Sn(OH)6 und deren Kristallstruktur. Acta Crystallographica, 13, 601603.CrossRefGoogle Scholar
Strunz, H. and Giglio, M. (1961) Die Kristallstructur von Sottit Fe[Ge(OH)6]. Acta Crystallographica, 14, 205208.CrossRefGoogle Scholar
Strunz, H., Söhnge, G. and Geier, B.H. (1958) Stottit, ein neues Germanium-Mineral und seine Paragenese in Tsumeb. Neues Jahrbuch für Mineralogie Monatshefte, 1958, 8596.Google Scholar
Sugahara, M., Yoshiasa, A., Yoneda, A., Hashimoto, T., Sakai, S., Okube, M., Nakatsuka, A. and Ohtaka, O. (2008) Single-crystal X-ray diffraction study of CaIrO3 . American Mineralogist, 93, 11481152.CrossRefGoogle Scholar
Sun, P.H., Nakamura, T., Shan, Y.J., Inaguma, Y and Itoh, M. (1997) High temperature quantum paraelectricity in perovskite-type titanates Ln1/2Na1/2TiO3. (Ln = La, Pr, Nd, Sm, Eu, Gd, andTb). Ferroelectrics, 200, 93107.CrossRefGoogle Scholar
Tanaka, T. and Okumara, K. (1977) Ultrafine barium titanate particles in the Allende meteorite. GeochemicalJournal, 11, 137145.CrossRefGoogle Scholar
Tarrida, M., Larguem, H. and Madon, M. (2009) Structural investigations of (Ca,Sr)ZrO3 and Ca(Sn, Zr)O3 perovskite compounds. Physics and Chemistry of Minerals, 36, 403413.CrossRefGoogle Scholar
Taylor, H.F.W. (1977) Cement Chemistry. Thomas Telford, London, 459 pp.Google Scholar
Tikhnenkov, I.P. and Kazakova, M.E. (1957) Nioboloparite — a new mineral of the perovskite group. Zapiski Vsesoyusnogo Mineralogicheskogo Obshchestva, 86, 641644.Google Scholar
Tschauner, O., Ma, C., Beckett, J.R., Prescher, C., Prakapenka, V.B. and Rossman, G.R. (2014) Discovery of bridgmanite, the most abundant mineral in the Earth, in a shocked meteorite. Science, 346, 11001102.CrossRefGoogle Scholar
Tsuchiya, T., Tsuchiya, J., Umemoto, K. and Wentzcovitch, R.M. (2004) Phase transitions of MgSiO3 perovskite in the earth's lower mantle. Earth and Planetary Science Letters, 224, 241248.CrossRefGoogle Scholar
Tsuda, K., Yasuhara, A. and Tanaka, M. (2013) Two-dimensional mapping of polarizations of rhombohedral nanostructures in the tetragonal phase of BaTiO3 by the combined use of scanning transmission electron microscopy and convergent-beam electron diffraction methods. Applied Physics Letters, 103, 082908.CrossRefGoogle Scholar
Vorobyev, E.I., Konev, A.A., Malyshonok, YY, Afonina, G.F. and Sapozhnikov, A.N. (1984) Tausonite SrTiO3. A new mineral of the perovskite group. Zapiski Vsesoyusnogo Mineralogicheskogo Obshchestva, 113, 8689.Google Scholar
Vousden, P. (1953) The structure of the ferroelectric sodium niobate at room temperature. Acta Crystallographica, 4, 545551.CrossRefGoogle Scholar
Wang, Z.Y., Wang, Z.C., Wu, Z.Y and Lou, X.W.D. (2013) Mesoporous single crystal CoSn(OH)6 hollow structures with multilevel interiors. Nature Scientific Reports, 3, srep 01391.Google ScholarPubMed
Welch, M.D. and Kampf, A.R. (2017) Stoichiometric partially-protonated states in hydroxide perovskites: the jeanbandyite enigma revisited. Mineralogical Magazine, 81, 297303.CrossRefGoogle Scholar
Welch, M.D. and Kleppe, A.K. (2016) Polymorphism of the hydroxide perovskite Ga(OH)3 and possible proton-driven transformational behaviour. Physics and Chemistry of Minerals, 43, 515536.CrossRefGoogle Scholar
Welch, M.D. and Wunder, B. (2013) A single crystal X-ray diffraction study of the 3.65Å-phase MgSi (OH)6, a high-pressure hydroxide perovskite. Physics and Chemistry of Minerals, 39, 693697.CrossRefGoogle Scholar
Welch, M.D., Crichton, W.A. and Ross, N.L. (2005) Compression of the perovskite-related mineral berna-lite Fe(OH)3 to 9 GPa and a re-appraisal of its structure. Mineralogical Magazine, 69, 309315.CrossRefGoogle Scholar
Williams, S.A. (1985) Mopungite, a new mineral from Nevada. Mineralogical Record, 16, 7374.Google Scholar
Williams, T., Lichtenberg, F., Widmer, D., Bednorz, G. and Reller, A. (1993) Layered perovskitic structures in pure and doped LaTiO3 5_x and SrNbO3 5_x . Journal of Solid State Chemistry, 103, 375386.CrossRefGoogle Scholar
Woodhead, J.D., Phillips, D., Hergt, J.M. and Paton, C. (2009) African kimberlites revisited: In situ Sr-isotope analysis of groundmass perovskite. Lithos, 112, 311317.CrossRefGoogle Scholar
Woodward, P. (1997) Octahedral tilting in perovskites. I. Geometrical considerations. Acta Crystallographica, B53, 3243.CrossRefGoogle Scholar
Wu, F., Yang, Y.H., Mitchell, R.H., Li, Q.L., Yang, J.H. and Zhang, Y.B. (2010) In situU-Pb age determination and Nd isotopic analysis of perovskites from kimberlites in southern Africa and Somerset Island, Canada. Lithos, 155, 205222.CrossRefGoogle Scholar
Wunder, B., Wirth, R. and Koch-Müller, M. (2011) The 3.65 Å phase in the system MgO-SiO2-H2O: Synthesis, structure and composition. American Mineralogist, 96, 12071214.CrossRefGoogle Scholar
Wunder, B., Jhan, S., Koch-Müller, M. and Speziale, S. (2012) The 3.65 Å phase, MgSi(OH)6: structural insights from DFT-calculations and T-dependent IR spectroscopy. American Mineralogist, 97, 10431048.CrossRefGoogle Scholar
Yakovenchuk, V., Ivanyuk, G., Pakhpmovsky, Y and Men'shikov, Y (2005) Khibiny. Laplandia Minerals, Apatity, Russia, 468 pp.Google Scholar
Yanamaka, T., Hirai, N. and Komatsu, Y (2002) Structural changes of Caj-SrJTK-perovskite with composition and pressure. The American Mineralogist, 87, 11831189.CrossRefGoogle Scholar
Zhao, Y (1998) Crystal chemistry and phase transitions of perovskites in P-T-X space: Data for (KxNa1_x)F3 . Journal of Solid State Chemistry, 141, 121132.CrossRefGoogle Scholar
Zhao, Y., Weidner, D.J., Leinenweber, K., Liu, X., Li, B., Meng, Y., Pacalo, E.G., Vaughan, M.T., Wang, Y and Yaganeh-Haeri, A. (1994) Perovskite at high P-T conditions: In situ synchrotron X-ray diffraction study of NaMgF3 perovskite. Journal of Geophysical Research, 99 B2, 28712885.CrossRefGoogle Scholar
Zurevinski, S.E., Heaman, L.M. andCreaser, R.A. (2011) The origin of Triassic/Jurassic kimberlite magmatism, Canada: Two mantle sources revealed from the Sr-Nd isotopic composition of groundmass perovskite. G3: Geochemistry Geophysics Geosystems, 12, https://doi.org/10.1029/2011GC003659 Google Scholar
Supplementary material: PDF

Mitchell et al. supplementary material

Appendix A

Download Mitchell et al. supplementary material(PDF)
PDF 100 KB
You have Access
72
Cited by