Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T23:50:01.789Z Has data issue: false hasContentIssue false

The morphologies and compositions of depleted uranium particles from an environmental case-study

Published online by Cambridge University Press:  05 July 2018

N. S. Lloyd*
Affiliation:
Department of Geology, University of Leicester, University Road, Leicester LE1 7RH, UK
J. F. W. Mosselmans
Affiliation:
Diamond Light Source Ltd., Diamond House, Chilton, Didcot DE0 11OX, UK
R. R. Parrish
Affiliation:
Department of Geology, University of Leicester, University Road, Leicester LE1 7RH, UK NIGL, Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG, UK
S. R. N. Chenery
Affiliation:
British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG, UK
S. V. Hainsworth
Affiliation:
Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH, UK
S. J. Kemp
Affiliation:
British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG, UK

Abstract

Uraniferous particles from contaminated environmental samples were analysed by scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDXA) and microfocus extended X-ray absorption fine structure (mEXAFS) spectroscopy. The particles of interest are uranium oxides, which were released into the environment by the combustion of scrap depleted uranium (DU) metal at a factory in Colonie, New York, USA. Most of the identified particles appear to have primary, ‘as emitted’ morphologies; some have evidence of minor dissolution, including corrosion pitting. Polycrystalline and often hollow microscopic spheres were identified, which are similar to particles produced by DU munitions impacting armoured targets. They are attributed to the autothermic oxidation of melt droplets. The compositions of the analysed spheres are dominated by UO2+x with variable amounts of U3O8, two of the least soluble and least bioaccessible phases of U. These particles, collected from dusts and soils, have survived more than 25 y in the terrestrial environment. This study further supports the case for using Colonie as an analogue for battlefield DU contamination.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, G.C. and Tempest, P.A. (1986) Ordered defects in the oxides of uranium. Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 406, 325—344.Google Scholar
Allen, G.C., Tempest, P.A., Garner, C.D., Ross, I. and Jones, D.J. (1985) EXAFS: A new approach to the structure of uranium oxides. Journal of Physical Chemistry, 89, 1334—1336.CrossRefGoogle Scholar
Allen, G.C., Butler, I.S. and Anh Tuan, N. (1987) Characterisation of uranium oxides by micro-Raman spectroscopy. Journal of Nuclear Materials, 144, 17—19.CrossRefGoogle Scholar
Anderson, J.S., Roberts, L.E. and Harper, E.A. (1955) The oxides of uranium. Part VII. The oxidation of uranium dioxide. Journal of the Chemical Society (Resumed), 3946—3959.Google Scholar
Ansoborlo, E., Chazel, V., Henge-Napoli, M.H., Pihet, P., Rannou, A., Bailey, M.R. and Stradling, N. (2002) Determination of the physical and chemical properties, biokinetics and dose coefficients of uranium compounds handled during nuclear fuel fabrication in France. Health Physics, 82, 279—289.CrossRefGoogle ScholarPubMed
Arnason, J.G. and Fletcher, B.A. (2003) A 40+ year record of Cd, Hg, Pb and U deposition in sediments of Patroon reservoir, Albany county, NY, USA. Environmental Pollution, 123, 383—391.CrossRefGoogle ScholarPubMed
Arnason, J.G., Lloyd, N.S., Parrish, R.R., Tang, Y. and Reeder, R.J. (2008) Oxidation of uranium oxide aerosol particles in the near-surface environment. Geochimica et Cosmochimica Acta, 72, A33.Google Scholar
ATSDR. (2004) Health Consultation: Colonie Site. Agency for Toxic Substances and Disease Registry, Atlanta, USA.Google Scholar
Baker, L. Jr, Schnizlein, J.G. and Bingle, J.D. (1966) The ignition of uranium. Journal of Nuclear Materials, 20, 22—38.CrossRefGoogle Scholar
Bellamy, R.G. and Buddery, J.H. (1952) The Production of Uranium Powder by the Uranium Dioxide- Magnesium Route. AWRE, Harwell, UK.Google Scholar
Berry, J.P., Zhang, L., Galle, P., Ansoborlo, E., Henge-Napoli, M.H. and Donnadieu-Claraz, M. (1997) Role of alveolar macrophage lysosomes in metal detoxification. Microscopy Research and Technique, 36, 313—323.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Bleise, A., Danesi, P.R. and Burkart, W. (2003) Properties, use and health effects of depleted uranium (DU): A general overview. Journal of Environmental Radioactivity, 64, 93 — 112.CrossRefGoogle ScholarPubMed
Carter, R.F. and Stewart, K. (1970) On the oxide fume formed by the combustion of plutonium and uranium. Inhaled particles, 2, 819—838.Google ScholarPubMed
Clark, C.R., Meyer, M.K. and Strauss, J.T. (1998) Fuel powder production from ductile uranium alloys. International Meeting on Reduced Enrichment for Research and Test Reactors, Sao Paulo, Brazil.Google Scholar
Dietz, L.A. (1980) Investigation of excess alpha activity observed in recent air filter collections and other environmental samples, (CHEM-434-LAD). Knolls Atomic Power Laboratory, General Electric Company, Schenectady, New York, USA.Google Scholar
Eidson, A.F. (1994) The effect of solubility on inhaled uranium compound clearance: A review. Health Physics, 67, 1 — 14.CrossRefGoogle ScholarPubMed
Elder, J.C. and Tinkle, M.C. (1980) Oxidation of depleted uranium penetrators and aerosol dispersal at high temperatures, (LA-8610-MS). Los Alamos Scientific Laboratory, New Mexico, USA.CrossRefGoogle Scholar
Finch, R.J. and Ewing, R.C. (1992) Corrosion of uraninite under oxidizing conditions. Journal of Nuclear Materials, 190, 133 — 156.CrossRefGoogle Scholar
Fletcher, D.A., McMeeking, R.F. and Parkin, D. (1996) The United Kingdom chemical database service. Journal of Chemical Information and Computer Sciences, 36, 746— 749.CrossRefGoogle Scholar
Frankel, G.S. (1998) Pitting corrosion of metals: A review of the critical factors. Journal of the Electrochemical Society, 145, 2186—2198.CrossRefGoogle Scholar
German, R.M. (1994) Powder Metallurgy Science. Metal Powder Industries Federation, Princeton, New Jersey, USA.Google Scholar
Guilmette, R.A. and Cheng, Y.S. (2009) Physicochemical characterization of Capstone depleted uranium aerosols IV: In vitro solubility analysis. Health Physics, 96, 292—305.CrossRefGoogle ScholarPubMed
Hopson, J.W., Hantel, L.W. and Sandtstrom, D.J. (1973) Evaluation of depleted-uranium alloys for use in armor-piercing projectiles (U), (LA-5238). Los Alamos Scientific Laboratory of the University of California, USA.Google Scholar
Hudson, E.A., Rehr, J.J. and Bucher, J.J. (1995) Multiple-scattering calculations of the uranium L3- edge X-ray-absorption near-edge structure. Physical Review B, 52, 13815 — 13826.CrossRefGoogle ScholarPubMed
ICRP. (1995) Age-dependent doses to members of the public from intake of radionuclides: Part 4 inhalation dose coefficients. Annals of the ICRP, 25.Google Scholar
INSC. (2008) INSC Material Properties Database. International Nuclear Safety Center, Argonne National Laboratory for US Department of Energy, Illinois, USA.Google Scholar
Jeter, H.W. and Eagleson, D.M. (1980) A Survey of Uranium in Soils surrounding the NL bearings Plant, (IWL-9488-461). Teledyne Isotopes, Westwood, New Jersey, USA.Google Scholar
Jones, D.J., Roziere, J., Allen, G.C. and Tempest, P.A. (1986) The structural determination of fluorite-type oxygen excess uranium oxides using EXAFS spectroscopy. The Journal of Chemical Physics, 84, 6075—6082.CrossRefGoogle Scholar
Jones, L.V., Ofte, D., Phipps, K.D. and Tucker, P.A. (1964) Preparation and properties of plutoniumbearing oxide particulates. Industrial and Engineering Chemistry Product Research and Development, 3, 78—82.CrossRefGoogle Scholar
Kashparov, V.A., Ahamdach, N., Zvarich, S.I., Yoschenko, V.I., Maloshtan, I.M. and Dewiere, L. (2004) Kinetics of dissolution of Chernobyl fuel particles in soil in natural conditions. Journal of Environmental Radioactivity, 72, 335—353.CrossRefGoogle ScholarPubMed
Katz, J.J. and Seaborg, G.T. (1957) The Chemistry of the Actinide Elements. Methuen & Co. Ltd (John Wiley & Sons Inc., NY), London.Google Scholar
Kips, R., Leenaers, A., Tamborini, G., Betti, M., Van Den Berghe, S., Wellum, R. and Taylor, P. (2007) Characterization of uranium particles produced by hydrolysis of UF6 using SEM and SIMS. Microscopy and Microanalysis, 13, 156—164.CrossRefGoogle ScholarPubMed
Koningsberger, D.C. and Prins, R., (editors). (1988) X-ray Absorption; Principles, Applications, Techniques of EXAFS, SEXAFS and XANES. John Wiley & Sons, Chichester, UK.Google Scholar
Krupka, K.M., Parkhurst, M.A., Gold, K., Arey, B.W., Jenson, E.D. and Guilmette, R.A. (2009) Physicochemical characterization of Capstone depleted uranium aerosols III: Morphologic and chemical oxide analyses. Health Physics, 96, 276-291.CrossRefGoogle ScholarPubMed
Langmuir, D. (1997) Aqueous Environmental Geochemistry. Prentice-Hall International, London.Google Scholar
Lind, O.C., Salbu, B., Janssens, K., Proost, K., Garcia-Leon, M. and Garcia-Tenorio, R. (2007) Characterization of U/Pu particles originating from the nuclear weapon accidents at Palomares, Spain, 1966 and Thule, Greenland, 1968. Science of the Total Environment, 376, 294-305 .CrossRefGoogle ScholarPubMed
Lloyd, N.S., Parrish, R.R., Chenery, S.R. and Arnason, J.G. (2008) The environmental fate of depleted uranium particulate after 25 years. Geochimica et Cosmochimica Acta, 72, A566.Google Scholar
Lloyd, N.S., Parrish, R.R., Horstwood, M.S. and Chenery, S.R. (2009) Precise and accurate isotopic analysis of microscopic uranium-oxide grains using LA-MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 24, 752-758 .CrossRefGoogle Scholar
Lo, D., Fleischer, R.L., Albert, E.A. and Arnason, J.G. (2006) Location, identification and size distribution of depleted uranium grains in reservoir sediments. Journal of Environmental Radioactivity, 89, 240-248 .CrossRefGoogle ScholarPubMed
Mabilon, G., Durand, D., Courty, P. and Prigent, M. (1991) Multifunctional catalyst for treating exhaust fumes from internal combustion engines, containing uranium, at least one uranium promotor and at least one precious metal and its preparation. US Patent 5051392. Institut Francais Du Petrole, Rueil Malmaison, France.Google Scholar
Martz, J.C. and Haschke, J.M. (1998) A mechanism for combustive heating and explosive dispersal of plutonium. Journal of Alloys and Compounds, 266, 90-103 .CrossRefGoogle Scholar
Matzke, H. (1999) Range, energy loss, energy straggling and damage production for a-particles in uranium dioxide. Journal of Nuclear Materials, 270, 49-54 .CrossRefGoogle Scholar
McEachern, R.J. and Taylor, P. (1998) A review of the oxidation of uranium dioxide at temperatures below 400°C. Journal of Nuclear Materials, 254, 87-121 .CrossRefGoogle Scholar
Meerson, G.A. (1960) Aspects of the metallurgy of uranium and constructional metals. The Soviet Journal of Atomic Energy, 6, 69-72 .CrossRefGoogle Scholar
Mitchel, R.E.J. and Sunder, S. (2004) Depleted uranium dust from fired munitions: Physical, chemical and biological properties. Health Physics, 87, 57-67 .CrossRefGoogle ScholarPubMed
Mosselmans, J.F., Quinn, P.D., Rosell, J.R., Atkinson, K.D., Dent, A.J., Cavill, S.I., Hodson, M.E., Kirk, C.A. and Schofield, P.F. (2008) The first environmental science experiments on the new microfocus spectroscopy beamline at Diamond. Mineralogical Magazine, 72, 197-200 .CrossRefGoogle Scholar
Osan, J., Torok, B., Torok, S. and Jones, K.W. (1997) Study of chemical state of toxic metals during the life cycle of fly ash using X-ray absorption near-edge structure. X-ray Spectrometry, 26, 37-44 .3.0.CO;2-G>CrossRefGoogle Scholar
Parkhurst, M.A., Daxon, E.G., Lodde, G.M., Szrom, F., Guilmette, R.A., Roszell, L.M., Falo, G.A. and McKee, C.B. (2004) Capstone aerosols: Depleted uranium aerosol doses and risks. Prepared for the U.S. Army, Battelle Press, Columbus, Ohio, USA.Google Scholar
Parrish, R.R., Horstwood, M., Arnason, J.G., Chenery, S., Brewer, T., Lloyd, N.S. and Carpenter, D.O. (2008) Depleted uranium contamination by inhalation exposure and its detection after ∼20 years: Implications for human health assessment. Science of the Total Environment, 390, 58-68 .CrossRefGoogle ScholarPubMed
Patrick, M.A. and Cornette, J.C. (1978) Morphological Characteristics of Particulate Material formed from High Velocity Impact of Depleted Uranium Projectiles with Armor Targets, (AFATL-TR-78- 117). U.S. Air Force Armament Laboratory.CrossRefGoogle Scholar
Roth, O. and Jonsson, M. (2008) Oxidation of UO2(s) in aqueous solution. Central European Journal of Chemistry, 6, 1-14 .Google Scholar
Salbu, B., Krekling, T., Oughton, D.H., Ostby, G., Kashparov, V.A., Brand, T.L. and Day, J.P. (1994) Hot particles in accidental releases from Chernobyl and Windscale nuclear installations. The Analyst, 119, 125-130 .CrossRefGoogle Scholar
Salbu, B., Krekling, T., Lind, O.C., Oughton, D.H., Drakopoulos, M., Simionovici, A., Snigireva, I., Snigirev, A., Weitkamp, T., Adams, F., Janssens, K. and Kashparov, V.A. (2001) High energy X-ray microscopy for characterisation of fuel particles. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 467-468, 1249-1252.CrossRefGoogle Scholar
Salbu, B., Janssens, K., Lind, O.C., Proost, K. and Danesi, P.R. (2003) Oxidation states of uranium in DU particles from Kosovo. Journal of Environmental Radioactivity, 64, 167-173 .CrossRefGoogle ScholarPubMed
Salbu, B., Janssens, K., Lind, O.C., Proost, K., Gijsels, L. and Danesi, P.R. (2005) Oxidation states of uranium in depleted uranium particles from Kuwait. Journal of Environmental Radioactivity, 78, 125-135 .CrossRefGoogle ScholarPubMed
Schueneman, R.A., Khaskelis, A.I., Eastwood, D., van Ooij, W.J. and Burggraf, L.W. (2003) Uranium oxide weathering: Spectroscopy and kinetics. Journal of Nuclear Materials, 323, 8-17 .CrossRefGoogle Scholar
Stebelkov, V. (2005) Informativeness of morphology analysis of uranium microparticles from industrial dust at nuclear plants. Proceedings of the GLOBAL 2005 Conference, Tsukuba, Japan.Google Scholar
Surya Narayana, D.S., Sundararajan, A.R. and Harvey, J. (1994) Characterization of uranium oxide aerosols. Journal ofAerosol Science, 25, 909-922 .Google Scholar
Taylor, P. (2005) Thermodynamic and kinetic aspects of UO2 fuel oxidation in air at 400-2000 K. Journal of Nuclear Materials, 344, 206-212 .CrossRefGoogle Scholar
Tenderholt, A., Hedman, B. and Hodgson, K.O. (2007) Pyspline: A modern, cross-platform program for the processing of raw averaged XAS edge and EXAFS data. Pp. 105—107 in: Conference Proceedings, 882, American Institute of Physics. New York, USA.Google Scholar
The Royal Society. (2001) The Health Hazards of Depleted Uranium Munitions, part I. The Royal Society, London.Google Scholar
The Royal Society. (2002) The Health Hazards of Depleted Uranium Munitions, part II. The Royal Society, London.Google Scholar
Tomic, S., Searle, B.G., Wander, A., Harrison, N.M., Dent, A.J., Mosselmans, J.F. and Inglesfield, J.E. (2005) New tools for the analysis of EXAFS: The DL_EXCURVpackage, (DL-TR-2005-001). Council for the Central Laboratory of the Research Councils, UK.Google Scholar
Torok, S., Osan, J., Vincze, L., Kurunczi, S., Tamborini, G. and Betti, M. (2004) Characterization and speciation of depleted uranium in individual soil particles using microanalytical methods. Spectrochimica Acta - Part B Atomic Spectroscopy, 59, 689—699.CrossRefGoogle Scholar
Torrero, M.E., Casas, I., de Pablo, J., Duro, L. and Bruno, J. (1998) Oxidative dissolution mechanism of uranium dioxide at 25°C. Mineralogical Magazine, 62A, 1529—1530.Google Scholar
Wadsten, T. (1977) Oxidation of polycrystalline uranium dioxide in air at room temperature. Journal of Nuclear Materials, 64, 315.CrossRefGoogle Scholar
Wang, R. and Katayama, Y.B. (1982) Dissolution mechanisms for UO2 and spent fuel. Nuclear and Chemical Waste Management, 3, 83—90.CrossRefGoogle Scholar
Supplementary material: PDF

Lloyd et al. supplementary material

Appendix 1

Download Lloyd et al. supplementary material(PDF)
PDF 2.2 MB
Supplementary material: PDF

Lloyd et al. supplementary material

Appendix 2

Download Lloyd et al. supplementary material(PDF)
PDF 17.9 MB