Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T18:57:54.077Z Has data issue: false hasContentIssue false

Minjiangite, BaBe2(PO4)2, a new mineral from Nanping No. 31 pegmatite, Fujian Province, southeastern China

Published online by Cambridge University Press:  02 January 2018

C. Rao*
Affiliation:
Department of Earth Sciences, Zhejiang University, 310027 Hangzhou, P.R. China
F. Hatert
Affiliation:
Laboratoire de Minéralogie, B18, Université de Liège, B–4000 Liège, Belgium
R. C. Wang
Affiliation:
State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, 210093 Nanjing, P.R. China
X. P. Gu
Affiliation:
School of Earth Sciences and Info-physics, Central South University, Changsha, 410083 Hunan, P.R. China
F. Dal Bo
Affiliation:
Laboratoire de Minéralogie, B18, Université de Liège, B–4000 Liège, Belgium
C. W. Dong
Affiliation:
Department of Earth Sciences, Zhejiang University, 310027 Hangzhou, P.R. China
*

Abstract

Minjiangite, ideally BaBe2(PO4)2, is a new mineral species which has been found in the Nanping No. 31 pegmatite, Fujian Province, southeastern China. It occurs in the fractures of montebrasite from pegmatite zone IV, and is associated with quartz, muscovite, hydroxylapatite and palermoite. Minjiangite forms subhedral to euhedral white crystals from 5 to 200 μm long, transparent to translucent, with a vitreous lustre. The estimated Mohs hardness is ∼6, the tenacity is brittle and no cleavage was observed. The calculated density is 3.49 g/cm3. Optically, minjiangite is uniaxial (+), with ω = 1.587(3), ε = 1.602(2) (λ = 589 nm). Electron-microprobe analyses (average of 8) give P2O5 40.16, BaO 43.01, BeO 14.06 (measured by Secondary Ion Mass Spectrometry), SiO2 0.17, CaO 0.17, SrO 0.08, FeO 0.03, MgO 0.01, TiO2 0.07, K2O 0.05, Na2O 0.11, total 97.92 wt.%. The empirical formula, calculated on the basis of 8 O a.p.f.u., is (Ba0.99Ca0.01Na0.01)Σ1.01Be1.98(P1.99Si0.01)Σ2.00O8. The powder X-ray diffraction (XRD) pattern of minjiangite perfectly fits that of synthetic BaBe2(PO4)2; the strongest eight lines of the powder XRD pattern of the natural phosphate [d in Å (I)(hkl)] are: 3.763(100)(101); 2.836(81.3)(102); 2.515(32.3)(110); 2.178(25.6)(200); 2.1620(19)(103); 2.090(63.9)(201); 1.770(16.2)(113); 1.507(25.4)(212). Unit-cell parameters, refined from the powder XRD pattern of natural minjiangite, are a = 5.030(8), c = 7.467 (2) Å, V = 163.96(3) Å3. These unit-cell parameters confirm that minjiangite is the natural analogue of synthetic BaBe2(PO4)2(P6/mmm, a = 5.029(1), c = 7.466 (1) Å, V = 163.52(1) Å3, Z = 1); its crystal structure is topologically similar to that of dmisteinbergite, CaAl2Si2O8, a hexagonal polymorph of anorthite. The formation of minjiangite is related to the hydrothermal alteration of montebrasite by late Ba- and Be-rich fluids.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbier, I, Grew, E.S., Moore, P.B. and Su, S. (1999) Khmaralite, a new beryllium-bearing mineral related to sapphirine: a superstructure resulting from partial ordering of Be, Al, and Si on tetrahedral sites. American Mineralogist, 84, 16501660.CrossRefGoogle Scholar
Burnham, C.W. (1991) LCLSQ version 8.4, least-squares refinement of crystallographic lattice parameters. Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA.Google Scholar
Chesnokov, B.Y, Lotova, E.V, Nigmatulina, E.N., Pavlyuchenko, VS. and Bushmakin, A.F. (1990) Dmisteinbergite CaAl2Si208 (hexagonal)-a new mineral. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 119, 43-6 [in Russian].Google Scholar
Cooper, M.A., Hawthorne, EC, Ball, N.A. and Cerny, P. (2006) Oftedalite, (Sc,Ca,Mn2+)2K(Be,Al)3Si1203o, a new member of the milarite group from the Heftetjern pegmatite, Tordal, Norway: description and crystal structure. The Canadian Mineralogist, 44, 943949.CrossRefGoogle Scholar
Dal Bo, E, Hatert, E andBaijot, M. (2014) Crystal Chemistry of synthetic M2+Be2P2O8 (M2+ = Ca, Sr, Pb, Ba) beryllophosphates. The Canadian Mineralogist, 52, 337350.CrossRefGoogle Scholar
Grew, E.S., Barbier, I, Britten, I, Yates, M.G., Polyakov, YO., Shcherbakova, E.P, Halenius, U. and Shearer, C.K. (2005) Makarochkinite, Ca2Fe4+Fe3+TiSi4BeAlO20, a new beryllosilicate member of the aenigmatite-sapphirine-surinamite group from the D'men mountains (southern Urals), Russia. American Mineralogist, 90, 14021412.CrossRefGoogle Scholar
Grew, E.S., Barbier, J., Britten, J., Halenius, U. and Shearer, C.K. (2007) The crystal chemistry of welshite, a non-centrosymmetric (PI) aenigmatite-sapphirine-surinamite group mineral. American Mineralogist, 92, 8090.CrossRefGoogle Scholar
Hawthorne, EC. and Huminicki, D.M.C. (2002) The crystal chemistry of beryllium. Pp. 333-104 in: Beryllium: Mineralogy, Petrology, and Geochemistry (Grew, E.S., editor). Reviews in Mineralogy & Geochemistry, 50. Mineralogical Society of America and the Geochemical Society, Washington DC.Google Scholar
Li, Z.L., Zhang, J.Z., Wu, Q.H. and Ouyang, Z.H. (1983) Geological and geochemical characteristics of a certain pegmatite ore field of rare metals in Fujian Province. Mineral Deposits, 2,49-58 [in Chinese with English abstract].Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship. IV The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Mazzi, E, Ungaretti, L., Dal Negro, A., Peterson, O.Y and Ronsbo, J.G. (1979) The crystal structure of semeno-vite. American Mineralogist, 64, 202210.Google Scholar
Momma, K. and Izumi, E (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.CrossRefGoogle Scholar
Mrose, M.E. (1952) Hurlbutite, CaBe2(PO4)2, a new mineral. American Mineralogist, 37, 931940.Google Scholar
Pouchou, J.L. and Pichoir, E (1984) Extension des possibilites quantitatives de la microanalyse par une formulation nouvelle des effets de matrice. Journal de Physique, 45, 1720.Google Scholar
Rao, C, Wang, R.C., Hu, H. and Zhang, WL. (2009) Complex internal texture in oxide minerals from the Nanping No. 31 dyke of granitic pegmatite, Fujian Province, southeastern China. The Canadian mineralogist, 47, 11951212.CrossRefGoogle Scholar
Rao, C, Wang, R.C. and Hu, H. (2011) Paragenetic assemblages of beryllium silicates and phosphates from the Nanping no. 31 granitic pegmatite dyke, Fujian province, southeastern China. The Canadian Mineralogist, 49, 11751187.CrossRefGoogle Scholar
Rao, C, Hatert, E, Wang, R.C, Gu, X.P., Dal, B.E and Dong, C.I (2013) Minjiangite, IMA 2013-021. CNMNC Newsletter No. 16, August 2013, page 2705. Mineralogical Magazine, 77, 26952709.Google Scholar
Rao, C, Wang, R.C., Hatert, E andBaijot, M. (2014a) Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26, 179188.CrossRefGoogle Scholar
Rao, C, Wang, R.C, Hatert, E, Gu, X., Ottolini, L., Hu, H., Dong, C, Dal Bo, E and Baijot, M. (20146) Strontiohurlbutite, SrBe2(PO4)2, a new mineral from Nanping no. 31 pegmatite, Fujian Province, Southeastern China. American Mineralogist, 99, 494–99.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Ada Crystallographica, A32, 751767.Google Scholar
Takeuchi, B.Y and Donnay, G. (1959) The crystal structure of hexagonal CaAl2Si208 . Ada Crystallographica, 12, 465470.CrossRefGoogle Scholar
Yang, YQ., Ni, YX., Guo, YQ., Qiu, N.M., Chen, C.H., Cai, C.F., Zhang, YP, Liu, IB. and Chen, YX. (1987) Rock-forming and ore-forming characteristics of the Xikeng granitic pegmatites in Fujian Province. Mineral Deposits, 6, 10-21 [in Chinese with English abstract].Google Scholar
Yang, Y.Q., Wang, W.Y., Ni, YX., Chen, C.H. and Zhu, J.H. (1994) Phosphate minerals and their geochemical evolution of granitic pegmatite in Nanping, Fujian Province. Geology of Fujian, 13, 215-226 [in Chinese with English abstract].Google Scholar