Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T15:50:53.973Z Has data issue: false hasContentIssue false

Mineral chemistry and geochronology of the potassic alkaline ultramafic Inagli complex, Aldan Shield, eastern Siberia

Published online by Cambridge University Press:  05 July 2018

U. Mues-Schumacher
Affiliation:
Min.-Pet. Institut, Alberstr. 23b, 79104 Freiburg, Germany
J. Keller
Affiliation:
Min.-Pet. Institut, Alberstr. 23b, 79104 Freiburg, Germany
V. A. Kononova
Affiliation:
IGEM, Staromonetny 35, 109017 Moscow, Russia
P. J. Suddaby
Affiliation:
Dept. of Geology, Imperial College, Prince Consort Road, London SW7 2BP, UK

Abstract

The Inagli complex, one of several Mesozoic intrusive complexes of the Aldan Shield (Siberian Platform), exhibits a concentric structure comprising several alkaline ultramafic rock-types. A central dunite body is surrounded by olivine- and phlogopite-clinopyroxenites forming an inner rim. The outer rim consists of different shonkinitic and malignitic rocks. The K-Ar ages obtained for the whole complex vary around 132 Ma.

The dunites and clinopyroxenites are characterized by cumulate textures. With increasing modal abundances of clinopyroxene and subordinate phlogopite, the rocks develop to olivine-clinopyroxenite, shonkinite, and malignite with intercumulus potassium feldspar. Mineralogical characterization of the rocks suggests they evolved by fractional crystallization. The highly forsteritic olivines (Fo up to 95) require a melt as magnesian as mg# 87.1, representing ±26 wt.% MgO. The parental melt is likely to be an olivine-, H2O- and K2O-rich picritic liquid of shoshonitic character. Major and trace element systematics show high LILE/LREE and LREE/HFSE ratios indicating the involvement of a subduction zone component in the genesis of these rocks.

Type
Petrology
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: Hauptstr. 3, D-71672, Marbach, Germany

References

Barsdell, M. (1988) Petrology and petrogenesis of clinopyroxenerich olivine tholelitic lavas from Merelava Volcano, Vanuatu. J. Prtrol, 29, 927—64.Google Scholar
Bilanenko, V.A., Spector, V.B. and Parfyonov, L.M. (1984) Geological outline of the Yakutsk ASSR. In: Yakutsk ASSR—Siberian Platform, Guidebook of Geol. Conventus Moscow, 136—51.Google Scholar
Bilibin, J.A. (1961) Late Jurassic Intrusions of the Central Aldan. Moscow, 161 pp. (in Russian).Google Scholar
Brooks, C.K., Fawcett, J.J., Gittins, J. and Rucklidge, J.C. (1981) The Batbjerg complex, east Greenland: a unique ultrapotassic Caledonian intrusion. Canad. J. Earth Sci., 18, 274–85.CrossRefGoogle Scholar
Brown, A.V., Page, N.J. and Love, A.H. (1988) Geology and Platinum-group-element geochemistry of the Serpentine Hill complex, Dundas Trough, Western Tasmania. Canad. Mineral, 26, 161–75.Google Scholar
Carswell, D.A. (1980) Mantle derived lherzolite nodules associated with kimberlite, carbonatite and basalt magmatism: a review. Lithos, 13, 121–38.CrossRefGoogle Scholar
Eales, H.V., De Klerk, W.J. and Teigler, B. (1990) Evidence for magma mixing processes within the Critical and Lower Zones of the northwestern Bushveld Complex, South Africa. Chem. GeoL, 88, 261–78.CrossRefGoogle Scholar
Edgar, A.D. (1987) The genesis of alkaline magmas with emphasis on their source regions: inferences from experimental studies. In. Alkaline Igneous Rocks.(Fitton, J.G. and Upton, B.G.J., eds.) Gcol. Soc. Spec. Publ., 30, 2952.Google Scholar
Eggins, S.M. (1992) Fetrogenesis of Hawaiian tholeiites: 1, phase equilibria constraints. Contrib. Mineral. Petrols 110, 387–97.CrossRefGoogle Scholar
Eggins, S.M., (1993) Origin and differentiation of picritic arc magmas, Ambae (Aoba), Vanuatu. Contrib. Mineral. Petrol., 114, 79100.CrossRefGoogle Scholar
Eggler, D.H. (1978) The effect of C02 upon partial melting of peridotite in the system Na2O-CaO- Al2O3-MgO-SiO2-CO2 to 35 kb, with an analysis of melting in a peridonte-H2O-CO2 system. Amer. J. ScL, 278, 305–45.CrossRefGoogle Scholar
Ewart, A. (1982) The mineralogy and petrology of Tertiary-Recent orogenic volcanic rocks: with special reference to the andesitic-basaltic compositional range. In: Andesites: Orogenic Andesites and Related Rocks.(Thorpe, R.S., ed.) John Wiley, New York. pp. 25—95.Google Scholar
Findlay, D.C. (1969) Origin of the Tulameen ultramafic- gabbro complex, southern British Columbia. Canad. J. Earth Sci., 6, 399-425.Google Scholar
Flisch, M. (1986) K-Ar-dating of quaternary samples. In: Dating Young Sediments(Hurford, A., Jager, E. and Ten Cate, J.A.M., eds.), CCOP technical secretariat, Bankok, Thailand, 299—323.Google Scholar
Furnes, H., Pedersen, R.B. and Maaloe, S. (1986) Petrology and geochemistry of spinel peridotite nodules and host basalt, Vestspitsbergen. Norsk Geol. Tids., 66, 5368.Google Scholar
Hurford, A., Jager, E. and Ten Cate, J.A.M. (1986) Dating Young Sediments. CCOP technical secretariat, Bankok, Thailand.Google Scholar
Irvine, T.N. (1967) The Duke Island ultramafic complex, southeastern Alaska. In: Ultramafic and Related Rocks.(Wyllie, P.J.. ed.), Wiley & Sons, New York, 8497.Google Scholar
Irvine, T.N. (1974) Bridget Cove volcanics, Juneau area, Alaska: possible parental magma of Alaskan-type ultramafic complexes. Car. Inst. Geophys. Lab., 72, 478–91.Google Scholar
Jakes, P. and Gill, J. (1970) Rare earth elements and the island arc tholeiite series. Earth Planet. Sci. Lett., 9, 1728.CrossRefGoogle Scholar
Kortschagin, A.M. (1972) Inagli-massive of ultrabasic and alkaline rocks (southern Yakutia). 1st. AN SSSR, ser. geol., 7, 4959.(in Russian).Google Scholar
Kortschagin, A.N. (1986) The metasomatites of Inagli. Geol.ser. DDK, 552, 4654.(in Russian).Google Scholar
Kostyuk, V.P. (1983) The potassic alkalic magmatism of the Baikal Aldan Belt. Sov. Geol. Geophys., 24, 31–8.(in Russian).Google Scholar
Kostyuk, V.P., Panina, L.I., Zhidkov, A.Ja., Orlova, M.P. and Bazarova, T.Ju. (1990) Potassic alkaline magmatism of Ihe Baikal-Stanovoy rift system. Novosib. Nauka, 239 (in Russian).Google Scholar
LeBas, N.J., LeMaitre, R.W., Streckeisen, A. and Zanettin, B. (1986) A chemical classification of volcanic rocks based on the TAS-diagram. J. Petrol., 27, 745–50.Google Scholar
LeMaitre, R.W. et at.(1989) A classification of igneous rocks and glossary of terms.IUGS (LeMaitre, R.W., ed.) p. 128.Google Scholar
Maksimov, E.P. (1972) Ring-type magmatic complexes of the Aldan-Shield. 1st. AN SSSR, ser. geol., 3, 3344.(in Russian).Google Scholar
Mitchell, R.H. and Bergman, S.C. (1991) Petrology of Lamproites. Plenum Press, New York. p. 447.CrossRefGoogle Scholar
Mues, U. (1993) Geochemische und radiometrische Untersuchungen an Lamproiten und andcren Alkaligesteinen von Yakokut und Inagli, Aldan- Schild, Ostsibirien. PhD thesis Univ. Freiburg, pp. 158.Google Scholar
Mues-Schumacher, U., Keller, J., Kononova, V.A. and Suddaby, P. (1995) Petrology and age determinations of the ultramafic (lamproitic) rocks from the Yakokut complex, Aldan Shield, Eastern Siberia. Mineral. Mag., 59, 409–28.CrossRefGoogle Scholar
Murray, C.G. (1972) Zoned ultramafic complexes of the Alaskan-type: feeder pipes of andesitic volcanoes. Geol. Soc. Amer., 132, 313—35.Google Scholar
Pearce, J.A. (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Andesites: Orogenic Andesites and Related Rocks. (Thorpe, R.S., ed), 525—48.Google Scholar
Peck, D.C. and Keays, R.R. (1990) Geology, geochemistry, and origin of Platinum-group element-chromi- tite occurrences in the Heazlewood river complex, Tasmania. Econ. Geol, 85, 765–93.CrossRefGoogle Scholar
Perchuk, L.L., Aranivich, L.Ya., Podlesskiy, K.K., Lavrant'eva, I.L., Gerasimov, V.Yu., Fed'kin, V.V., Kitsul, V.I., Karsakov, L.P. and Berdnikov, N.V. (1985) Precambrian granulites of the Aldan- Shield, eastern Siberia. J. Metamorph. Geol, 3, 265310.CrossRefGoogle Scholar
Roeder, P.L. and Emslie, R.F. (1970) Olivine-liquid equilibrium. Contrib. Mineral. Petrol, 29, 275–89.CrossRefGoogle Scholar
Ruckmick, J.C. and Noble, J.A. (1959) Origin of the ultramafic complex at Union Bay, southeastern Alaska. Geol. Soc. Amer. Bull., 70, 981—1018.CrossRefGoogle Scholar
Steiger, R.H. and Jager, E. (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett., 36, 359–62.CrossRefGoogle Scholar
Stewart, B.W. and DePaolo, D.J. (1990) Studies of processes in mafic magma chambers: II. The Skaergaard intrusion, East Greenland. Contrib Mineral. Petrol., 104, 125–41.CrossRefGoogle Scholar
Sun, S.S. and McDonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In. Magmatism in Ocean Basins(Saunders, A.D. and Norry, N.J., eds.) Geol. Soc. Spec. Publ., 42, 313—45.Google Scholar
Taylor, H.P. Jr. (1967) The zoned ultramafic complexes of southeastern Alaska. In: Ultramafic and related rocks. (Wyllie, P.J., ed.) Wiley & Sons, New York, 97121.Google Scholar
Taylor, H.P. Jr. and Noble, J.A. (1960) Origin of the ultramafic complexes in southeastern Alaska. Int. Geol. Cong., 21st, Copenhagen, Comptes Rendus Sec. 13, 175-87.Google Scholar
Taylor, H.P. Jr. and Noble, J.A. (1969) Origin of magnetite in the zoned ultramafic complexes in southeastern Alaska. In. Magmatic Ore Deposits.(Wilson, H.D.B., ed.) Econ. Geol. Mon., 4, 209–30.Google Scholar
Tatsumi, Y., Hamilton, D.L. and Nesbitt, R.W. (1986) Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: evidence from high-pressure experiments and natural rocks. J. Volcanol. Geotherm. Res., 29, 293309.CrossRefGoogle Scholar
Wyllie, P.J. (1978) Peridotite-C02-H20 and the Low- Velocity Zone. Bull VolcanoL, 41, 670–83.CrossRefGoogle Scholar