Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T20:49:07.431Z Has data issue: false hasContentIssue false

Micro-structural phenomena in agate/chalcedony: spiral growth

Published online by Cambridge University Press:  03 October 2018

Jens Götze*
Affiliation:
TU Bergakademie Freiberg, Institute of Mineralogy, Brennhausgasse 14, 09599 Freiberg
Harry Berek
Affiliation:
TU Bergakademie Freiberg, Institute of ceramics, glass and construction materials, Agricolastraße 17, 09599 Freiberg
Klaus Schäfer
Affiliation:
Flurstraße 19, 55758 Vollmersbach
*
*Author for correspondence: Jens Götze, Email: jens.goetze@mineral.tu-freiberg.de

Abstract

Agates with spectacular micro-structural features were found in volcanic rocks at several occurrences in the Saar-Nahe region (Germany). These agates include spirals of several tens up to several hundreds of μm in size within zones lacking the characteristic structural agate banding. A combined mineralogical study by polarising microscopy, scanning electron microscopy, cathodoluminescence microscopy and spectroscopy, and electron backscatter diffraction provided evidence that the spirals consist of well-ordered trigonal α-quartz, whereas the surrounding matrix is composed of strongly disordered or amorphous SiO2 phases. The quartz micro-crystals show a systematic rotation of the crystal orientation perpendicular to the direction of the spiral loops indicating helical growth.

It is assumed that the spiral growth is initiated by dislocations with a screw component. The lacking symmetry of the strongly disordered or amorphous matrix initiated a curved development by a screw dislocation in a system far from equilibrium. The atoms/molecules are packed into spiral layers, which is energetically favoured in comparison with the incorporation into plane crystal faces. Such self-organisation growth and polymerisation initiated by a screw dislocation can produce variable spiral morphologies sometimes resembling living forms.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Martin Lee

References

Dominguez-Bella, S. and Garcia-Ruiz, J.M. (1986) Textures in induced morphology crystal aggregates of CaCO3: Sheaf of wheat morphologies. Journal of Crystal Growth, 79, 236240.10.1016/0022-0248(86)90444-6Google Scholar
Elicki, O. and Breitkreuz, C. (2016) Die Entwicklung des Systems Erde. Springer-Verlag Berlin Heidelberg, 296 pp.10.1007/978-3-662-47192-0Google Scholar
Ferris, F.G., Beveridge, B.J. and Fyfe, W.S. (1986) Iron-silica crystallite nucleation by bacteria in a geothermal sediment. Nature, 320, 609611.Google Scholar
Glaab, F., Kellermeier, M., Kunz, W., Morallon, E. and Garcia-Ruiz, J.M. (2012) Formation and evolution of chemical gradients and potential differences across self-assembling inorganic membranes. Angewandte Chemie, 124, 43934397.10.1002/ange.201107754Google Scholar
Götze, J. (2009 a) Application of Nomarski DIC and cathodoluminescence (CL) microscopy to building materials. Materials Characterization, 60, 594602.10.1016/j.matchar.2008.09.006Google Scholar
Götze, J. (2009 b) Chemistry, textures and physical properties of quartz – Geological interpretation and technical application. Mineralogical Magazine, 73, 645671.10.1180/minmag.2009.073.4.645Google Scholar
Götze, J. (2011) Agate – fascination between legend and science. Pp. 20133 in: Agates III ( Zenz, J., editor). Bode, Lauenstein, Germany.Google Scholar
Götze, J. (2014) Minerals in agates. Pp. 716 in: The Wonderful World of Agates. Mindat.org Show Special, Denver Mineral Show.Google Scholar
Götze, J., Müller, A., Polgári, M. and Pál-Molnár, E. (2011) Biosignaturen in Achat/Chalcedon – die Rolle von Mikroorganismen bei der Bildung von SiO2. Mineralienwelt, 22/1, 9096.Google Scholar
Gránásy, L., Pusztai, T., Tegze, G., Warren, J.A. and Douglas, J.F. (2005) Growth and form of spherulites. Physical Reviews, E72, 1160511619.Google Scholar
Haudin, F., Cartwright, J.H.E., Braua, F. and De Wit, A. (2014) Spiral precipitation patterns in confined chemical gardens. Proceedings of the National Academy of Science PNAS, 111(49), 1736317367.10.1073/pnas.1409552111Google Scholar
Heaney, P.J. (1993) A proposed mechanism for the growth of chalcedony. Contributions to Mineralogy and Petrology, 115, 6674.10.1007/BF00712979Google Scholar
Kellermeier, M., Cölfen, H. and García-Ruiz, J.M. (2012) Silica Biomorphs: Complex biomimetic hybrid materials from “sand and chalk”. European Journal of Inorganic Chemistry, 32, 51235144.Google Scholar
Lenz, G. and Schäfer, K. (2008) Spiralen im Achat – ein biologisches oder ein mineralogisches Phänomen? Lapis, 1/2008, 2124.Google Scholar
Moxon, T. (1996) Agate: Microstructure and Possible Origin. Terra Publications, Doncaster, UK, 106 pp.Google Scholar
Moxon, T., Petrone, C.M. and Reed, S.J.B. (2013) Characterization and genesis of horizontal banding in Brazilian agate: an X-ray diffraction, thermogravimetric and electron microprobe study. Mineralogical Magazine, 77, 227248.Google Scholar
Neuser, R.D., Bruhn, F., Götze, J., Habermann, D. and Richter, D.K. (1995) Kathodolumineszenz: Methodik und Anwendung. Zentralblatt für Geologie und Paläontologie Teil I, H. 1/2, 287306.Google Scholar
Noorduin, W.L., Grinthal, A., Mahadevan, L. and Aizenberg, J. (2013) Rationally designed complex, hierarchical microarchitectures. Science, 340, 832837.Google Scholar
Ortoleva, P., Chen, Y. and Chen, W. (1994) Agates, geodes, concretions and orbicules: self-organized zoning and morphology. Pp. 283305 in: Fractals and Dynamic Systems in Geosciences (Kruhl, J.H., editor). Springer-Verlag Berlin Heidelberg.10.1007/978-3-662-07304-9_22Google Scholar
Ozin, G.A., Yang, H., Sokolov, I. and Coombs, N. (1997) Shell mimetics. Advanced Materials, 9, 662667.10.1002/adma.19970090817Google Scholar
Parenteau, M.N. and Cady, S.L. (2010) Microbial biosignatures in iron-mineralized phototropic mats at Chocolate Pots Hot Springs, Yellowstone National Park, United States. PALAIOS, 25, 97111.10.2110/palo.2008.p08-133rGoogle Scholar
Ramseyer, K., Baumann, J., Matter, A. and Mullis, J. (1988) Cathodoluminescence colours of alpha-quartz. Mineralogical Magazine, 52, 669677.Google Scholar
Schäfer, K. (2002) Die Achate der Freisener Höhe. Lapis, 6/2002, 1321.Google Scholar
Schmitt-Riegraf, C. (1996) Magmenentwicklung und spät- bis post-magmatische Alterationsprozesse permischer Vulkanite im Nordwesten der Nahe-Mulde. Münstersche Forschungen zur Geologie und Paläontologie, 80, 251 S.Google Scholar
Stapelbroek, M., Griscom, D.L., Friebele, E.J. and Sigel, G.H. Jr. (1979) Oxygen-associated trapped-hole centers in high-purity fused silicas. Journal of Non-Crystalline Solids, 32, 313326.10.1016/0022-3093(79)90079-6Google Scholar
Stevens-Kalceff, M.A. (2009) Cathodoluminescence microcharacterization of point defects in α-quartz. Mineralogical Magazine, 73, 585606.Google Scholar
Thewalt, U. and Dörfner, G. (2012) Wie kommt das Moos in den Moosachat – und wie nicht? Der Aufschluss, 63, 116.Google Scholar
Verma, A.R. (1951) Spiral growth on carborundum crystal faces. Nature, 4258, 939.10.1038/167939a0Google Scholar
Walger, E., Mattheß, G., von Seckendorff, V. and Liebau, F. (2009) The formation of agate structures: models for silica transport, agate layer accretion, and for flow patterns and flow regimes in infiltration channels. Neues Jahrbuch für Mineralogie, Abhandlungen, 186/2, 113152.Google Scholar
Yang, H., Coombs, N. and Ozin, G.A. (1997) Morphogenesis of shapes and surface patterns in mesoporous silica. Nature, 386, 692695.10.1038/386692a0Google Scholar