Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T05:51:43.668Z Has data issue: false hasContentIssue false

Kitagohaite, Pt7Cu, a new mineral from the Lubero region, North Kivu, Democratic Republic of the Congo

Published online by Cambridge University Press:  05 July 2018

A. R. Cabral*
Affiliation:
Lagerstätten und Rohstoffe, Technische Universität Clausthal, Adolph-Roemer-Str. 2A, 38678 Clausthal-Zellerfeld, Germany
R. Skála
Affiliation:
Institute of Geology of the Academy of Sciences of the Czech Republic, v.v.i., Rozvojová 269, CZ-165 00 Prague 6, Czech Republic
A. Vymazalová
Affiliation:
Czech Geological Survey, Geologická 6, CZ-152 00 Prague 5, Czech Republic
A. Kallistová
Affiliation:
Institute of Geology of the Academy of Sciences of the Czech Republic, v.v.i., Rozvojová 269, CZ-165 00 Prague 6, Czech Republic
B. Lehmann
Affiliation:
Lagerstätten und Rohstoffe, Technische Universität Clausthal, Adolph-Roemer-Str. 2A, 38678 Clausthal-Zellerfeld, Germany
J. Jedwab
Affiliation:
Université Libre de Bruxelles, CP 160/02, 50 Avenue Roosevelt, B-1050 Brussels, Belgium
T. Sidorinová
Affiliation:
Czech Geological Survey, Geologická 6, CZ-152 00 Prague 5, Czech Republic

Abstract

Kitagohaite, ideally Pt7Cu, is a new mineral from the Lubero region of North Kivu, Democratic Republic of the Congo. The mineral occurs as alluvial grains that were recovered together with other Pt-rich intermetallic compounds and Au. Kitagohaite is opaque, greyish white and malleable and has a metallic lustre and a grey streak. In reflected light, kitagohaite is white and isotropic. The crystal structure of kitagohaite is cubic, space group Fmm, of the Ca7Ge type, with a = 7.7891(3) Å, V = 472.57(5) Å3 and Z = 4. The strongest diffraction lines [d in Å(I)(hkl)] are: 2.246 (100)(222), 1.948(8)(004), 1.377 (77)(044), 1.174(27)(622), 1.123 (31)(444) and 0.893 (13)(662). The Vickers hardness is 217 kg mm−2 (VHN100), which is equivalent to a Mohs hardness of 3½ and the calculated density is 19.958(2) g cm−3. Electron-microprobe analyses gave a mean value (n = 13) of 95.49 wt.% Pt and 4.78 wt.%Cu, which corresponds to Pt6.93Cu1.07 on the basis of eight atoms. The new mineral is named for the Kitagoha river, in the Lubero region.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bruker AXS (2008) TOPAS V4: General Profile and Structure Analysis Software for Powder Diffraction Data. User’s Manual. Bruker AXS GmbH, Karlsruhe, Germany.Google Scholar
Bruker AXS (2011) DIFFRAC.EVA V2. User’s Manual. Bruker AXS GmbH, Karlsruhe, Germany.Google Scholar
Cabral, A.R., Lehmann, B. and Jedwab, J. (2012) Empirical Pt7Cu from an alluvial platinum concentrate and its significance for platiniferous quartz lodes in the Lubero region, DR Congo. Neues Jahrbuch für Mineralogie, Abhandlungen, 189, 217221.CrossRefGoogle Scholar
Cabral, A.R., Skalá, R., Vymazalová, A., Kallistová, A., Lehmann, B., Jedwab, J. and Sidorinová, T. (2014) Kitagohaite, IMA 2013-114. CNMNC Newsletter No. 19, February 2014, page 169; Mineralogical Magazine, 78, 165170.Google Scholar
Carelse, M. and Lang, C.I. (2006) Order hardening in platinum 14 at.% copper. Scripta Materialia, 54, 13111315.CrossRefGoogle Scholar
Criddle, A.J. and Stanley, C.J. (1993) Quantitative Data File for Ore Minerals. Chapman & Hall, London.Google Scholar
Holland, T.J.B. and Redfern, S.A.T. (1997) Unit-cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 6577.CrossRefGoogle Scholar
Jedwab, J., Cervelle, B., Gouet, G., Hubaut, X. and Piret, P. (1992) The new platinum selenide luberoite Pt5Se4 from the Lubero region (Kivu Province, Zaire). European Journal of Mineralogy, 4, 683692.CrossRefGoogle Scholar
Kojonen, K., Tarkian, M., Melcher, F. and Törnroos, R. (2008) Pt-Pd selenides from river placers, northern Finland. Session MPM-04 Platinum-group mineralogy, 33rd International Geological Congress, Oslo. Abstracts CD-ROM, X-CD Technologies, Oslo.Google Scholar
Kwitko, R., Cabral, A.R., Lehmann, B., Laflamme, J.H.G., Cabri, L.J., Criddle, A.J. and Galbiatti, H.F. (2002) Hongshiite (PtCu) from itabirite-hosted Au- Pd-Pt mineralization (jacutinga), Itabira district, Minas Gerais, Brazil. The Canadian Mineralogist, 40, 711723.CrossRefGoogle Scholar
Passau, G. (1945) Les gisements auro-platinifères du Kivu (Province Orientale-Congo Belge). Bulletin des Séances de l’Institut Royal Colonial Belge, 16, 7692.Google Scholar
Schneider, A. and Esch, U. (1944) Das System Kupfer–Platin. Zeitschrift für Elektrochemie, 50, 290301.Google Scholar
Sluiter, M.H.F., Colinet, C. and Pasturel, A. (2006) Ab initio calculation of the phase stability in Au-Pd and Ag-Pt alloys. Physical Review B, 73, 174204.CrossRefGoogle Scholar
Smith, D.G.W. and Nickel, E.H. (2007) A system for codification for unnamed minerals: report of the Subcommittee for Unnamed Minerals of the IMA Commission on New Minerals, Nomenclature and Classification. The Canadian Mineralogist, 45, 9831055.CrossRefGoogle Scholar
Thompson, P., Cox, D.E. and Hastings, J.B. (1987) Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3. Journal of Applied Crystallography, 20, 7983.CrossRefGoogle Scholar
Törnroos, R., Johanson, B. and Kojonen, K. (1998) Alluvial nuggets of platinum-group minerals and alloys from Finnish Lapland. Geological Survey of Finland Special Paper, 26, 6364.Google Scholar
Yu, Z. (2001) New data of daomanite and hongshiite. Acta Geologica Sinica, 75, 458466.Google Scholar