Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-09T13:11:00.460Z Has data issue: false hasContentIssue false

The influence of stereochemically active lone-pair electrons on crystal symmetry and twist angles in lead apatite-2H type structures

Published online by Cambridge University Press:  05 July 2018

T. Baikie*
Affiliation:
Energy Research Institute @ NTU (ERI@N), Research Technoplaza, Nanyang Technological University, Nanyang Drive, 637553, Singapore
M. Schreyer
Affiliation:
Institute of Chemical & Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore
F. Wei
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798, Singapore
J. S. Herrin
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798, Singapore Earth Observatory of Singapore, Nanyang Technological University, Nanyang Avenue, 639798, Singapore
C. Ferraris
Affiliation:
Laboratoire de Minéralogie et Cosmochimie du Muséum National d’Histoire Naturelle, UMR CNRS 7202, CP52, 61 Rue Buffon, 75005 Paris, France
F. Brink
Affiliation:
Centre for Advanced Microscopy, Australian National University, Canberra, ACT 0200, Australia
J. Topolska
Affiliation:
Department of Mineralogy, Petrography and Geochemistry, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Krakow, Poland
R. O. Piltz
Affiliation:
Bragg Institute, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia
J. Price
Affiliation:
Australian Synchrotron Company Ltd, 800 Blackburn Rd, Clayton, VIC 3168, Australia
T. J. White
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798, Singapore

Abstract

Lead-containing (Pb-B-X)-2H apatites encompass a number of [AF]4[AT]6[(BO4)6]X2 compounds used for waste stabilization, environmental catalysis and ion conduction, but the influence of the stereochemically active lone-pair electrons of Pb2+ on crystal chemistry and functionality is poorly understood. This article presents a compilation of existing structural data for Pb apatites that demonstrate paired electrons of Pb2+ at both the AF and AT results in substantial adjustments to the PbFO6 metaprism twist angle, φ. New structure refinements are presented for several natural varieties as a function of temperature by single-crystal X-ray diffraction (XRD) of vanadinite-2H (ideally Pb10(VO4)6Cl2), pyromorphite-2H (Pb10(PO4)6Cl2), mimetite-2H/M (Pb10(As5+O4)6Cl2) and finnemanite-2H (Pb10(As3+O3)6Cl2). A supercell for mimetite is confirmed using synchrotron single-crystal XRD. It is suggested the superstructure is necessary to accommodate displacement of the stereochemically active 6s2 lone-pair electrons on the Pb2+ that occupy a volume similar to an O2− anion. We propose that depending on the temperature and concentration of minor substitutional ions, the mimetite superstructure is a structural adaptation common to all Pb-containing apatites and by extension apatite electrolytes, where oxide ion interstitials are found at similar positions to the lonepair electrons. It is also shown that plumbous apatite framework flexes substantially through adjustments of the PbFO6 metaprism twist-angles (φ) as the temperature changes. Finally, crystalchemical [100] zoning observed at submicron scales will probably impact on the treatment of diffraction data and may account for certain inconsistencies in reported structures.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aminoff, G. (1923) Finnemanit, ett nytt blyarsenit från Långban (Finnemanite, a new lead arsenite from Långban). Geologiska Föreningen i Stockholm Förhandlingar, 45, 160163.CrossRefGoogle Scholar
Aminoff, G. and Parsons, A.L. (1927) Symmetry and lattice dimensions of finnemanite and mimetite. Geologiska Föreningen i Stockholm Förhandlingar, 49, 438440.CrossRefGoogle Scholar
Andersson, S. and Åstrom, A. (1972) The stereochemistry of the inert pair in some solid oxides or oxide fluorides of Sb3+, Bi3+ and Pb2+. Pp 3–14 in: Solid State Chemistry – Proceedings of the 5th Materials Research Symposium, National Bureau of Standards Special Publication 364.Google Scholar
Audubert, F., Savariault, J.M. and Lacout, J.L. (1999) Pentaleadtris (vanadate) iodide, a defect vanadinitetype compound. Acta Crystallographica C, 55, 271273.CrossRefGoogle Scholar
Azrour, M., El Ammari, L., Le Fur, Y. and Elouadi, B. (1998) Etude structurale d’orthovanadates d’alcalins et de plomb cristalisant avecla structure apatite lacunaire. Journal of Solid State Chemistry, 141, 373377.CrossRefGoogle Scholar
Bahfenne, S. and Frost, R.L. (2010) Raman spectroscopic study of the mineral finnemanite Pb5(As3+O3)3Cl. Journal of Raman Spectroscopy, 41, 329333.CrossRefGoogle Scholar
Baikie, T., Mercier, P.H.J., Elcombe, M.M., Kim, J.Y., Page, Y.L., Mitchell, L.D. and White, T.J. (2007) Triclinic Apatites. Acta Crystallographica B, 63, 251256.CrossRefGoogle ScholarPubMed
Baikie, T., Ferraris, C., Klooster, W.T., Madhavi, S., Pramana, S.S., Pring, A. and Schmidt, G. (2008) The crystal chemistry and mimetite (Pb10(AsO4) 6Cl1.48O0.26) and finnemanite (Pb10(AsO3)6Cl2). Acta Crystallographica B, 64, 3441.CrossRefGoogle Scholar
Baikie, T., Pramana, S.S., Ferraris, C., Huang, Y., Kendrick, E., Knight, K.S., Ahmad, Z. and White, T.J. (2010) Polysomatic apatites. Acta. Crystallographica B, 66, 116.Google Scholar
Baikie, T., Fang, Y., Kadro, J.M., Schreyer, M.K., Wei, F., Mhaisalkar, S., Graetzel, M. and White, T.J. (2013) Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid state sensitised solar cell applications. Journal of Materials Chemistry A, 1, 56285641.CrossRefGoogle Scholar
Barinova, A.V., Bonin, M., Pushcharovskii, D.Y., Rastsvetaeva, R.K., Schenk, K. and Dimitrova, O.V. (1998) Crystal structure of synthetic hydroxylpyromorphyte Pb5(PO4)3(OH). Kristallografiya, 42, 224227.Google Scholar
Bechade, E., Masson, O., Iwata, Y., Julien, I., Fukuda, K., Thomas, P. and Champion, E. (2009) Diffusion path and conduction mechanism of oxide ions in apatite-type lanthanum silicates. Chemistry of Materials, 21, 25082517.CrossRefGoogle Scholar
Belokoneva, E.L., Troneva, E.A., Dem’yanets, L.N., Duderov, N.G. and Belov, N.V. (1982) Crystal structure of synthetic fluoropyromorphite Pb5(PO4)3F. Kristallografiya, 27, 793794.Google Scholar
Biagioni, C. and Pasero, M. (2013) The crystal structure of johnbaumite, Ca5(AsO4)3OH, the arsenate analogue of hydroxyapatite. American Mineralogist, 98, 15801584.CrossRefGoogle Scholar
Bigi, A., Ripamonti, A., Brückner, S. Gazzano, M., Roveri, N. and Thomas, S.A. (1989) Structure refinements of lead-substituted calcium hydroxya patite by X-ray powder fitting. Acta Crystallographica B, 45, 247251.CrossRefGoogle Scholar
Bruker (2008) Topas Version 4.1. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Calos, N.J. and Kennard, C.H.L. (1990) Crystal structure of mimetite, Pb5(AsO4)3Cl. Zeitschrift für Kristallographie, 191, 125129.CrossRefGoogle Scholar
Carlson, S., Norrestam, R., Holstam, D. and Spengler, R. (1997) The crystal structure of ganomalite Pb9Ca5.44Mn0.56Si9O33 . Zeitschrift für Kristallographie, 212, 208212.Google Scholar
Dai, Y.S. and Hughes, J.M. (1989) Crystal structure refinements of vanadinite and pyromorphite. The Canadian Mineralogist, 27, 189192.Google Scholar
Dai, Y.S., Hughes, J.M. and Moore, P.B. (1991) The crystal structures of mimetite and clinomimetite. The Canadian Mineralogist, 29, 369376.Google Scholar
Dong, Z. and White, T.J. (2004a) Calcium-lead fluorovanadinite apatites. I Disequilibrium structures. Acta Crystallographica B, 60, 138145.CrossRefGoogle Scholar
Dong, Z. and White, T.J. (2004b) Calcium-lead fluorovanadinite apatites. II. Equilbrium structures. Acta Crystallographica B, 60, 146154.CrossRefGoogle Scholar
Dowty, E. (2002) ATOMS Version 6.0. Shape Software, Kingsport, Tennessee, USA.Google Scholar
Effenberger, H. and Pertlik, F. (1979) Die kristallstruktur des finnemanits, Pb5Cl(AsO3), mit einem vergleich zum strukturtyp des chlorapatits Ca5Cl(PO4)3. Tschermaks Mineralogische und Petrographische Mitteilungen, 26, 95107.Google Scholar
Elliott, P. (1991) Minerals of the Beltana Mine, Puttapa, South Australia. The Mineralogical Record, 22, 449456.Google Scholar
Engel, G. and Deppisch, B. (1988) Die kristallstruktur von Pb5(GeO4)2SO4 und Pb5(GeO4)2CrO4, zweier bleiapatite mit unbesetzten halogenlagen. Zeitschrift für Anorganische und Allgemeine Chemie, 562, 131140.CrossRefGoogle Scholar
Eon, J.G., Boechat, C.B., Rossi, A.M., Terra, J. and Ellis, D.E. (2006) A structural analysis of lead hydroxyvanadinite. Physical Chemistry Chemical Physics, 8, 18451852.CrossRefGoogle ScholarPubMed
Fleet, M.E., Liu, X. and Shieh, S.R. (2010) Structural change in lead fluorapatite at high pressure. Physics and Chemistry of Minerals, 37, 19.CrossRefGoogle Scholar
Flis, J., Borkiewicz, O., Bajda, T., Manecki, M. and Klasa, J. (2010) Synchrotron-based X-ray diffraction of the lead apatite series Pb10(PO4)6Cl2 - Pb10(AsO4)6Cl2. Journal of Synchrotron Radiation, 17, 207214.CrossRefGoogle Scholar
Gabrielson, O. (1955) The crystal structure of finnemanite Pb5Cl(AsO3)3. Arkiv für Kemi, Mineralogi och Geologi, 2, 18.Google Scholar
Giuseppetti, G., Rossi, G. and Tadini, C. (1971) The crystal structure of nasonite. American Mineralogist, 56, 11741179.Google Scholar
Grubb, P.L.C. (1971) Mineralogy and genesis of the Beltana zinc-lead deposit, Puttapa, South Australia. Journal of the Geological Society of Australia, 18, 165171.CrossRefGoogle Scholar
Hamdi, B., El Feki, H., Salah, A.B., Salles, P., Baules, P. and Savariault, J.-M. (2006) Ionic conductivity and phase transition in Pb4.8Bi1.6Na3.6(PO4)6, an apatitetype compound. Solid State Ionics, 177, 14131420.CrossRefGoogle Scholar
Hata, M., Marumo, F., Iwai, S. and Aoki, H. (1980) Structure of a lead apatite Pb9(PO4)6. Acta Crystallographica B, 36, 21282130.CrossRefGoogle Scholar
Hendricks, S.B., Jefferson, M.E. and Mosley, V.M. (1932) The crystal structures of some natural and synthetic apatite-like substances. Zeitschrift für Kristallographie, 81, 352369.Google Scholar
Holten, T., Jamtveit, B. and Meakin, P. (2000) Noise and oscillatory zoning in minerals. Geochimica et Cosmochimica Acta, 64, 18931904.CrossRefGoogle Scholar
Ivanov, S.A. and Zavodnik, V.E. (1989) Crystal structure of Pb5GeV2O12. Soviet Physics – Crystallography, 34, 493496.Google Scholar
Kabsch, W. (2010) XDS. Acta Crystallographica D, 66, 125132.CrossRefGoogle ScholarPubMed
Kampf, A.R., Steele, I.M. and Jenkins, R.A. (2006) Phosphohedyphane, Ca2Pb3(PO4)3Cl, the phosphate analog of hedyphane: Description and crystal structure. American Mineralogist, 91, 19091917.CrossRefGoogle Scholar
Kay, M.I., Newnham, R.E. and Wolfe, R.W. (1975) The crystal structure of the ferroelectric phase of Pb5Ge3O11. Ferroelectrics, 9, 16.CrossRefGoogle Scholar
Keppler, U. (1968) Monokliner mimetsit, Pb5(AsO4)3Cl. Neues Jahrbuch für Mineralogie, Monatschefte, 1968, 359362.Google Scholar
Keppler, U. (1969) Zum modifikationswechsel chlorhaltiger apatite. Neues Jahrbuch für Mineralogie, Monatschefte, 1969, 6467.Google Scholar
Koumiri, M.E., Oishi, S., Sato, S., Ammari, L.E. and Elouadi, B. (2000) The crystal structure of the lacunar apatite NaPb4(PO4)3 . Materials Research Bulletin, 35, 503513.CrossRefGoogle Scholar
Krivovichev, S.V. and Burns, P.V. (2003) Crystal chemistry of lead oxide phosphates: crystal structures of Pb4O(PO4)2, Pb8O5(PO4)2 and Pb10(PO4)6O. Zeitschrift für Kristallographie, 218, 357365.Google Scholar
Krivovichev, S.V., Armbruster, T. and Depmeier, W. (2004) One-dimensional lone electron pair micelles in the crystal structure of Pb5(SiO4)(VO4)2 . Materials Research Bulletin, 39, 17171722.CrossRefGoogle Scholar
Lee, P.L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M.A., Von Dreele, R.B., Ribaud, L., Kurtz, C., Antao, S., Jiao, X. and Toby, B.H. (2008) A twelve-analyzer detector system for high-resolution powder diffraction. Journal of Synchrotron Radiation, 15, 427432.Google ScholarPubMed
León-Reina, L., Losilla, E.R., Martinez-Lara, M., Bruque, S. and Aranda, M.A.G. (2004) Interstitial oxygen conduction in lanthanum oxy-apatite electrolytes. Journal of Materials Chemistry, 14, 11421149.CrossRefGoogle Scholar
Lim, S., Baikie, T., Smith, R., Knight, K. and White, T.J. (2011) The apatite metaprism twist angle (F) as a tool for crystallochemical diagnosis. Journal of Solid State Chemistry, 184, 29782986.CrossRefGoogle Scholar
Mathew, M., Brown, W.E., Austin, M. and Negas, T. (1980) Lead alkali apatites without hexad anion: the crystal structure Pb8K2(PO4)6 . Journal of Solid State Chemistry, 35, 6976.Google Scholar
Mills, S.J., Ferraris, G., Kampf, A.R. and Favreau, G. (2012) Twinning in pyromorphite: The first documented occurrence of twinning by merohedry in the apatite supergroup. American Mineralogist, 97, 415418.CrossRefGoogle Scholar
Momma, K. and Izumi, F. (2008) VESTA: a threedimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 41, 653658.CrossRefGoogle Scholar
Moore, P.B. and Shen, J. (1984) Roeblingite, Pb2Ca6(SO4)2(OH)2(H2O)4[Mn(Si3O9)2]: its crystal structure and comments on the lone-pair effect. American Mineralogist, 69, 11731179.Google Scholar
Naddari, T., Savariault, J.M., Feki, H.E., Salles, P. and Salah, A.B. (2002) Conductivity and structural investigations in lacunary Pb6Ca2Li2(PO4)6 apatite. Journal of Solid State Chemistry, 166, 237244.CrossRefGoogle Scholar
Naddari, T., Feki, H.E., Savariault, J.M., Salles, P. and Salah, A.B. (2003) Structure and ionic conductivity of the lacunary apatite Pb6Ca2Na2(PO4)6 . Solid State Ionics, 158, 157166.CrossRefGoogle Scholar
Noda, Y., Masumoto, K., Ohba, S., Saito, Y., Toriumi, K., Iwata, Y. and Shibuya, I. (1987) Temperature depedence of atomic thermal parameters of lead chalcogenides, PbS, PbSe and PbTe. Acta Crystallographica C, 43, 14431445.CrossRefGoogle Scholar
Orera, A., Baikie, T., Kendrick, E., Shin, J.F., Pramana, S., Smith, R., White, T.J., Sanjuán, M.L. and Slater, P.R. (2011) Apatite germanates doped with tungsten: synthesis, structure and conductivity. Dalton Transactions, 40, 39033908.CrossRefGoogle ScholarPubMed
Palatinus, L. and Chapuis, G. (2007) Superflip – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, 40, 786790.CrossRefGoogle Scholar
Panchmatia, P., Orera, A., Rees, G.J., Smith, M.E., Hanna, J.V., Slater, P.R. and Islam, M.S. (2001) Elucidation of oxygen defects and novel transport mechanisms in apatite fast-ion conductors: combined 17O NMR and modelling studies. Angewandte Chemie International Edition, 50, 93289333.CrossRefGoogle Scholar
Pasero, M., Kampf, A.R., Ferraris, C., Pekov, I.V., Rakovan, J.F. and White, T.J. (2010) Nomenclature of apatite supergroup minerals. European Journal of Mineralogy, 22, 163179.CrossRefGoogle Scholar
Petříček, V., Dusek, M. and Palatinus, L. (2006) JANA2006. The Crystallographic Computing System. Institute of Physics, Prague.Google Scholar
Philibert, J. (1963) X-ray Optics and X-ray Micro Analysis. Academic Press, New York, USA.Google Scholar
Philibert, J., and Tixier, R. (1968) Electron penetration and the atomic number correction in electron probe microanalysis. Journal of Applied Physics (Journal of Physics D), 1, 685694.CrossRefGoogle Scholar
Reed, S.J.B. (1965) Characteristic fluorescence corrections in electron-probe microanalysis. British Journal of Applied Physics, 16, 913926.CrossRefGoogle Scholar
Rouse, R.C., Dunn, P.J. and Peacor, D.R. (1984) Hedyphane from Franklin, New Jersey and Långban, Sweden: cation ordering in an arsenate apatite. American Mineralogy, 89, 920927.Google Scholar
Schneider, W. (1967) Caracolit, das Na3Pb2(SO4)3Cl mit Apatitstruktur. Neues Jahrbuch für Mineralogie, Monatshefte, 1967, 284289.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica A, 32, 751767.CrossRefGoogle Scholar
Shore, M. and Fowler, A.D. (1996) Oscillatory zoning in minerals: a common phenomenon. The Canadian Mineralogist, 34, 11111126.Google Scholar
Sokolova, E.V., Egorov-Tismenko, Y.K. and Yakhontova, L.K. (1982) Research on crystal structures of rare arsenates: dufite and mimetite. Vestnik Moskovskogo universiteta, Seriia 4, Geologiia, 1982, 5056.Google Scholar
Trotter, J. and Barnes, W.H. (1958) The structure of vanadinite. The Canadian Mineralogist, 6, 161173.Google Scholar
Walsh, A. and Watson, G.W. (2005) The origin of the stereochemically active Pb(II) lone pair: DFT calculations of PbO and PbS. Journal of Solid State Chemistry, 178, 14221428.CrossRefGoogle Scholar
Walsh, A., Payne, D.J., Egdell, R.G. and Watson, G.W. (2011) Stereochemistry of post-transition metal oxides: revision of the classical lone-pair model. Chemical Society Reviews, 40, 44554463.CrossRefGoogle ScholarPubMed
White, T.J. and Dong, Z. (2003) Structural derivation and crystal chemistry of apatites. Acta Crystallographica B, 59, 116.CrossRefGoogle ScholarPubMed
White, T.J. and Toor, I.A. (1996) Stabilizing toxic metal concentrates using SMITE. Journal of the Minerals Metals & Materials Society, 48, 5458.CrossRefGoogle Scholar
Yang, Z., Ding, K., de Fourestier, J. and Li, H. (2013) The crystal structure of mimetite-2M, a new polymorph of mimetite from Xianghualing tinpolymetalic orefield, Hunan Province, R. R. China. Neues Jahrbuch für Mineralogie – Abhandlungen, 190(2), 229235.CrossRefGoogle Scholar
Supplementary material: PDF

Baikie et al. supplementary material

Supplemental information. Tables S1-21, Figs S1-3

Download Baikie et al. supplementary material(PDF)
PDF 872.6 KB