Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-17T17:03:05.387Z Has data issue: false hasContentIssue false

Gortdrumite, Cu24Fe2Hg9S23, from Leogang, Salzburg, Austria: crystal structure and revision of the chemical formula

Published online by Cambridge University Press:  28 February 2018

Luca Bindi*
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via G. La Pira 4, I-50121 Firenze, Italy CNR - Istituto di Geoscienze e Georisorse, Sezione di Firenze, Via G. La Pira 4, I-50121 Firenze, Italy
Werner H. Paar
Affiliation:
Pezoltgasse 46, A-5020 Salzburg, Austria
Peter Leblhuber
Affiliation:
TIWAG, Eduard-Wallnöfer-Platz 2, A-6020 Innsbruck, Austria

Abstract

The crystal structure of the mineral gortdrumite, a rare copper-mercury-iron sulfide, was solved using intensity data collected using a crystal from the Neuschurf adit, Leogang, Salzburg, Austria. This study revealed that the structure is triclinic, space group P$\bar 1$, with cell parameters: a = 9.677(4), b = 9.865(5), c = 11.992(5) Å, α = 77.85(4), β = 79.42(3), γ = 76.30(4)°, V = 1076.5(8) Å3 and Z = 1. The refinement led to an R index of 0.0833 for 3335 independent reflections and 143 parameters. Twelve S sites (one with half occupancy) and eighteen metal sites (5 Hg, 12 Cu and 1 Fe) occur in the crystal structure of gortdrumite. Mercury cations link two sulfur atoms in a linear coordination, Cu cations are found in various low-coordination (2, 3 and 4) sites, in agreement with the Cu preference for such environments, and Fe in tetrahedral coordination. Metal–metal interactions are also present and these contacts are discussed in relation with other copper sulfides, intermetallics and pure metals. Electron microprobe analyses of the crystal used for the structural study led to the formula Cu24.83Fe1.73Hg9.09S22.35, on the basis of 58 atoms. On the basis of information gained from the structural and chemical characterization, the crystal-chemical formula was revised to Cu24Fe2Hg9S23 (Z = 1) instead of (Cu,Fe)6Hg2S5 as reported previously.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Andrew Christy

References

Auvray, P. and Genet, F. (1973) Affinement de la structure cristalline du cinabre α-HgS. Bulletin de la Société Française de Minéralogie et de Crystallographie, 96, 218219.Google Scholar
Biagioni, C. and Bindi, L. (2017) Ordered distribution of Cu and Ag in the crystal structure of balkanite, Cu9Ag5HgS8. European Journal of Mineralogy, 29, 279285.Google Scholar
Bindi, L. and Menchetti, S. (2011) Fast ion conduction character and ionic phase-transition in silver sulfosalts: The case of fettelite [Ag6As2S7][Ag10HgAs2S8]. American Mineralogist, 96, 792796.Google Scholar
Bindi, L. and Pinch, W.W. (2014) Cameronite, Cu5–x(Cu,Ag)3+xTe10 (x = 0.43), from the Good Hope mine, Vulcan, Colorado: crystal structure and revision of the chemical formula. Canadian Mineralogist, 52, 423432.Google Scholar
Bindi, L., Evain, M. and Menchetti, S. (2006) Temperature dependence of the silver distribution in the crystal structure of natural pearceite, (Ag,Cu)16(As,Sb)2S11. Acta Crystallographica, B62, 212219.Google Scholar
Bindi, L., Evain, M. and Menchetti, S. (2007 a) Complex twinning, polytypism and disorder phenomena in the crystal structures of antimonpearceite and arsenpolybasite. Canadian Mineralogist, 45, 321333.Google Scholar
Bindi, L., Evain, M., Spry, P.G. and Menchetti, S. (2007 b) The pearceite-polybasite group of minerals: Crystal chemistry and new nomenclature rules. American Mineralogist, 92, 918925.Google Scholar
Bindi, L., Evain, M., Spry, P.G., Tait, K.T. and Menchetti, S. (2007 c) Structural role of copper in the minerals of the pearceite-polybasite group: The case of the new minerals cupropearceite and cupropolybasite. Mineralogical Magazine, 71, 641650.Google Scholar
Bindi, L., Keutsch, F.N., Francis, C.A. and Menchetti, S. (2009) Fettelite, [Ag6As2S7][Ag10HgAs2S8] from Chañarcillo, Chile: Crystal structure, pseudosymmetry, twinning, and revised chemical formula. American Mineralogist, 94, 609615.Google Scholar
Bindi, L., Downs, R.T., Spry, P.G., Pinch, W.W. and Menchetti, S. (2012) A chemical and structural re-examination of fettelite samples from the type locality, Odenwald, southwest Germany. Mineralogical Magazine, 76, 551566.Google Scholar
Bindi, L., Carbone, C., Belmonte, D., Cabella, R. and Bracco, R. (2013) Weissite from Gambatesa mine, Val Graveglia, Liguria, Italy: occurrence, composition and determination of the crystal structure. Mineralogical Magazine, 77, 475483.Google Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.Google Scholar
Criddle, A.J. and Stanley, C.J. (editors) (1993) Quantitative Data File for Ore Minerals. 3rd ed. Chapman & Hall, London.Google Scholar
Downs, R.T., Bartelmehs, K.L., Gibbs, G.V. and Boisen, M.B. Jr. (1993) Interactive software for calculating and displaying X-ray or neutron powder diffractometer patterns of crystalline materials. American Mineralogist, 78, 11041107.Google Scholar
Evain, M., Bindi, L. and Menchetti, S. (2006) Structural complexity in minerals: twinning, polytypism and disorder in the crystal structure of polybasite, (Ag,Cu)16(Sb,As)2S11. Acta Crystallographica, B62, 447456.Google Scholar
Guillou, J.J., Monthel, J., Picot, P., Pillard, F., Protas, J. and Samama, J.C. (1985) L'imitérite, Ag2HgS2, nouvelle espèce minérale; propriétés et structure cristalline. Bulletin de Minéralogie, 108, 457464.Google Scholar
Ibers, J.A. and Hamilton, W.C. (editors) (1974) International Tables for X-ray Crystallography, vol. IV, 366 pp. Kynoch Press, Dordrecht, The Netherlands.Google Scholar
Leblhuber, P. (2000) Lagerstättenkundliche Untersuchungen im Grubenrevier Schwarzleo-Mitte, Leogang, Salzburg. Unpublished Diploma thesis, University Salzburg, Austria.Google Scholar
Orlandi, P., Meerschaut, A., Moëlo, Y., Palvadeau, P. and Léone, P. (2005) Lead-antimony sulfosalts from Tuscany (Italy). VIII. Rouxelite, Cu2HgPb22Sb28S64(O,S)2, a new sulfosalt from Buca della Vena mine, Apuan Alps: definition and crystal structure. Canadian Mineralogist, 43, 919933.Google Scholar
Orlandi, P., Moëlo, Y., Campostrini, I. and Meerschaut, A. (2007) Lead-antimony sulfosalts from Tuscany (Italy). IX. Marrucciite, Hg3Pb16Sb18S46, a new sulfosalt from Buca della Vena mine, Apuan Alps: Definition and crystal structure. European Journal of Mineralogy, 19, 267279.Google Scholar
Oxford Diffraction (2006) CrysAlis RED (Version 1.171.31.2) and ABSPACK in CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.Google Scholar
Pfitzner, A., Evain, M. and Petricek, V. (1997) Cu12Sb4S13: A temperature-dependent structure investigation. Acta Crystallographica, B53, 337345.Google Scholar
Sejkora, J., Škácha, P., Laufek, F. and Plášil, J. (2017) Brodtkorbite from Příbram, Czech Republic: crystal structure and description. European Journal of Mineralogy, 29, 663672.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.Google Scholar
Steed, G.M. (1983) Gortdrumite, a new sulphide mineral containing copper and mercury, from Ireland. Mineralogical Magazine, 47, 3536.Google Scholar
Suh, I.-K., Ohta, H. and Waseda, Y. (1988) High-temperature thermal expansion of six metallic elements measured by dilation method and X-ray diffraction. Journal of Materials Science, 23, 757760.Google Scholar
Wuensch, B.J. (1964) The crystal structure of tetrahedrite, Cu12Sb4S13. Zeitschrift für Kristallographie, 119, 437453.Google Scholar
Supplementary material: File

Bindi et al. supplementary material

Bindi et al. supplementary material

Download Bindi et al. supplementary material(File)
File 22.3 KB