Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-17T14:13:41.979Z Has data issue: false hasContentIssue false

Fluoro-sodic-ferropedrizite, NaLi2(Fe22+Al2Li)Si8O22F2, a new mineral of the amphibole group from the Sutlug River, Tuva Republic, Russia: description and crystal structure

Published online by Cambridge University Press:  05 July 2018

R. Oberti*
Affiliation:
CNR-Istituto di Geoscienze e Georisorse, unità di Pavia, via Ferrata 1, I-27100 Pavia, Italy
M. Boiocchi
Affiliation:
Centro Grandi Strumenti, Università di Pavia, via Bassi 21, I-27100 Pavia, Italy
N. A. Ball
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
F. C. Hawthorne
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada

Abstract

Fluoro-sodic-ferropedrizite, ideally ANaBLi2C()TSi8O22WF2, is a new mineral of the amphibole group from the Sutlug River, Tuva Republic, Russia. It occurs at the endogenic contact of a Li-pegmatite with country rocks near to a diabase dyke and formed by reaction of the pegmatitic melt with the country rock. Fluoro-sodic-ferropedrizite occurs as prismatic to acicular crystals, ranging in length from 0.1–3 cm and widths of up to 50 μm. Crystals occur inparallel to sub-parallel aggregates up to 5 mm across ina matrix of calcite and plagioclase feldspar. Crystals are pale bluish-grey with a greyish-white streak.

Fluoro-sodic-ferropedrizite is brittle, has a Mohs hardness of ~6 and a splintery fracture; it is non-fluorescent with perfect {110} cleavage, no observable parting, and has a calculated density of 3.116 g cm–3. In plane-polarized light, it is pleochroic, X = pale purple-grey, Y = light grey, Z = colourless; X ^ a = 71.2º (in β acute), Y || b, Z ^ c = 83.4º (in β obtuse). Fluoro-sodic-ferropedrizite is biaxial positive, α = 1.642(1), β = 1.644(1), γ = 1.652(1); 2V(obs) = 68.0(3)º, 2V(calc) = 56.4º. Fluoro-sodic-ferropedrizite is monoclinic, space group C2/m, a = 9.3720(4) Å, b = 17.6312(8) Å, c = 5.2732(3) Å, β = 102.247(4)º, V = 851.5(2) Å3, Z = 2. The strongest ten X-ray diffraction lines in the powder patternare (d in Å ,(I),(hkl)): 8.146,(10),(110); 2.686,(9),(151); 3.008,(8),(310); 4.430,(7),(021); 2.485,(6),(02); 3.383,(4),(131); 2.876,(3),(51, 11); 2.199,(3),(12); 4.030,(2),(111) and 3.795,(2),(31). Analysis by a combination of electron microprobe and crystal-structure refinement gives SiO2 59.81, Al2O3 12.66, TiO2 0.09, FeO 10.32, MgO 5.56, MnO 0.73, ZnO 0.17, CaO 0.20, Na2O 2.81, Li2O 4.80, F 2.43, H2Ocalc 1.10, sum = 99.65 wt.%. The formula unit, calculated on the basis of 24(O,OH,F) is A(Na0.68)B(Li1.92Na0.05Ca0.03)C() T(Si7.98Al0.02)O22W(F1.03OH0.97). Crystal-structure refinement shows Li to be completely ordered at the M(3) and M(4) sites. Fluoro-sodic-ferropedrizite, ideally ANaBLi2C()TSi8O22WF2, is related to the theoretical end-member ‘sodic-pedrizite’, ANaBLi2C(Mg2Al2Li)TSi8O22W(OH)2, by the substitutions CFe2+CMg and WF → W(OH).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armbruster, T., Oberhansli, R., Bermanec, V. and Dixon, R. (1993) Hennomartinite and kornite: two new Mn3+ rich silicates from the Wessels Mine, Kalahari, South Africa. Schweizerische Mineralogische und Petrographische Mitteilungen, 73, 349—355.Google Scholar
Bartelmehs, K.L., Bloss, F.D., Downs, R.T. and Birch, J.B. (1992) Excalibr II. Zeitschrift für Kristallographie, 199, 185 — 196.CrossRefGoogle Scholar
Burke, E.A. and Leake, B.E. (2004) ‘Named amphiboles’: a new category of amphiboles recognized by the International Mineralogical Association (IMA), and the proper order of prefixes to be used in amphibole names. The Canadian Mineralogist, 42, 1881 — 1883.CrossRefGoogle Scholar
Caballero, J.M., Monge, A., La Iglesia, A. and Tornos, F. (1998) Ferri-clinoholmquistite, a new BLi clino- amphibole from the Pedriza Massif, Sierra de Guadarrama, Spanish Central System. American Mineralogist, 83, 167—171.CrossRefGoogle Scholar
Caballero, J.M., Oberti, R. and Ottolini, L. (2002) Ferripedrizite, a new monoclinic BLi amphibole end- member from the Eastern Pedriza Massif, Sierra de Guadarrama, Spain, and a restatement of the nomenclature of Mg-Fe-Mn-Li amphiboles. American Mineralogist, 87, 976—982.CrossRefGoogle Scholar
Colville, P.A., Ernst, W.G. and Gilbert, M.C. (1966) Relationships between cell parameters and chemical composition of monoclinic amphiboles. American Mineralogist, 51, 1727—1754.Google Scholar
Ginsburg, I.V. (1965) Holmquistite and its structural variety clinoholmquistite. Trudy, Mineralogicheskiy Muzeya Akademiya Nauk SSSR, 16, 73—89.Google Scholar
Hawthorne, F.C. (1983) The crystal chemistry of the amphiboles. The Canadian Mineralogist, 21, 173—480.Google Scholar
Hawthorne, F.C. and Oberti, R. (2006) On the classification of amphiboles. The Canadian Mineralogist, 44, 1—21.CrossRefGoogle Scholar
Hawthorne, F.C. and Oberti, R. (2007a) Amphiboles: crystal chemistry. Pp. 1—54 in: Amphiboles: Crystal Chemistry, Occurrence and Health Issues. (F.C. Hawthorne, R. Oberti, G. Della Ventura and A. Mottana, editors). Reviews in Mineralogy and Geochemistry, 67. Mineralogical Society of America, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Hawthorne, F.C. and Oberti, R. (2007b) Classification of the amphiboles. Pp. 55—88 in: Amphiboles: Crystal Chemistry, Occurrence and Health Issues. (F.C. Hawthorne, R. Oberti, G. Della Ventura and A. Mottana, editors). Reviews in Mineralogy and Geochemistry, 67. Mineralogical Society of America, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Hawthorne, F.C., Oberti, R., Ungaretti, L. and Grice, J.D. (1992) Leakeite, NaNa2Mg2(Mg2 ) Si8O22(OH)2, a new amphibole from the Kajlidongri manganese mine, Jhabua district, Madhya Pradesh, India. American Mineralogist, 77, 1112—1115.Google Scholar
Hawthorne, F.C., Ungaretti, L., Oberti, R., Bottazzi, P. and Czamanske, G.K. (1993) Li: an important component in igneous alkali amphiboles. American Mineralogist, 78, 733—745.Google Scholar
Hawthorne, F.C., Oberti, R., Ungaretti, L., Ottolini, L., Grice, J.D. and Czamanske, G.K. (1996a) Fluor- ferro-leakeite, NaNa2()Si8O22F2, a new alkali amphibole from the Canada Pinabete pluton, Questa, New Mexico, U.S.A. The Canadian Mineralogist, 81, 226—228.Google Scholar
Hawthorne, F.C., Oberti, R. and Sardone, N. (1996b) Sodium at the A-site in clinoamphiboles: the effects of composition on patterns of order. The Canadian Mineralogist, 34, 577—593.Google Scholar
Leake, B.E., Woolley, A.R., Arps, C.E., Birch, W.D., Gilbert, M.C., Grice, J..D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M., Schumacher, J.C., Smith, D.C., Stephenson, N.C., Ungaretti, L., Whittaker, E.J. and Guo, Y. (1997) Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. The Canadian Mineralogist, 35, 219—246.Google Scholar
Leake, B.E., Woolley, A.R., Birch, W.D., Burke, E.A., Ferraris, G., Grice, J.D., Hawthorne, F.C., Kisch, H.J., Krivovichev, V.G., Schumacher, J.C., Stephenson, N.C. and Whittaker, E.J. (2003) Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association's amphibole nomenclature. The Canadian Mineralogist, 41, 1355 — 1370.Google Scholar
Matsubara, S., Miyawaki, R., Kurosawa, M., Suzuki, Y. (2002) Potassicleakeite, a new amphibole from the Tanohata mine, Iwate prefecture, Japan. Journal of Mineralogical and Petrological Sciences, 97, 177—184.Google Scholar
Oberti, R., Cámara, F., Caballero, J.M. and Ottolini, L. (2003a) Sodic-ferri-ferropedrizite and ferri-clinofer- roholmquistite: Mineral data and degree of order of the A-site cations in Li-rich amphiboles. The Canadian Mineralogist, 41, 1345—1354.Google Scholar
Oberti, R., Cámara, F., Ottolini, L. and Caballero, J.M. (2003b) Lithium in amphiboles: detection, quantification and incorporation mechanisms in the compositional space bridging sodic and BLi amphibole. European Journal of Mineralogy, 15, 309—319.CrossRefGoogle Scholar
Oberti, R., Cámara, F. and Ottolini, L. (2005) Clinoholmquistite discredited: The new amphibole end-member fluoro-sodic-pedrizite. American Mineralogist, 90, 732—736.CrossRefGoogle Scholar
Oberti, R., Hawthorne, F.C., Cannillo, E. and Cámara, F. (2007) Long-range order in amphiboles. Pp. 125 — 171 in: Amphiboles: Crystal Chemistry, Occurrence and Health Issues. (F.C. Hawthorne, R. Oberti, G. Della Ventura and A. Mottana, editors). Reviews in Mineralogy and Geochemistry, 67. Mineralogical Society of America, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F. (1985) ‘PAP’ j(pZ) procedure for improved quantitative microanalysis. Pp. 104 — 106 in: Microbeam Analysis. (J.T. Armstrong, editor). San Francisco Press, San Francisco, California, USA.Google Scholar
Tait, K.T., Hawthorne, F.C., Grice, J.D., Ottolini, L. and Nayak, V.K. (2005) Dellaventuraite, NaNa2 , a new anhydrous amphibole from the Kajlidongri Manganese Mine, Jhabua District, Madhya Pradesh, India. American Mineralogist, 90, 304—309.CrossRefGoogle Scholar
Supplementary material: File

Oberti et al. supplementary material

Stucture factor data

Download Oberti et al. supplementary material(File)
File 934.9 KB
Supplementary material: File

Oberti et al. supplementary material

Cif file

Download Oberti et al. supplementary material(File)
File 18.1 KB