Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-19T23:49:23.972Z Has data issue: false hasContentIssue false

Discussion on Wang et al. (2000) ‘Chemistry of Hf-rich zircons from the Laoshan I- and A-type granites, Eastern China’, Mineralogical Magazine, 64, 867–877

Published online by Cambridge University Press:  05 July 2018

U. Kempe
Affiliation:
Institute of Mineralogy, Freiberg University of Mining and Technology, Brennhausgasse 14, 09596 Freiberg, Germany
T. Gruner
Affiliation:
Institute of Mineralogy, Freiberg University of Mining and Technology, Brennhausgasse 14, 09596 Freiberg, Germany
A. D. Renno
Affiliation:
Institute of Mineralogy, Freiberg University of Mining and Technology, Brennhausgasse 14, 09596 Freiberg, Germany
D. Wolf
Affiliation:
Institute of Mineralogy, Freiberg University of Mining and Technology, Brennhausgasse 14, 09596 Freiberg, Germany
M. René
Affiliation:
Institute of Rock Structure and Mechanics, Academy of Sciences of Czech Republic, V Holešovičkách 41, 18209 Prague 8, Czech Republic

Abstract

Wang et al. (2000) presented interesting new data on the occurrence of Hf-rich zircon in peralkaline granitic rocks. It is shown that the knowledge of the Hf distribution in zircon is important for the understanding of Zr/Hf ratios defined by whole-rock analysis. However, the processes leading to the unusual Zr/Hf fractionation are still poorly constrained. Some aspects are discussed further here. Analysis of available data demonstrates that extremely low Zr/Hf ratios found in topaz- and rare-metal bearing granites may be either a primary signature of some evolved granitic melts or, alternatively, they are produced during albitization of the rocks. Topaz- and rare-metal bearing granites may be P-rich and contain zircon moderately enriched in Hf (2—9 wt.% HfO2). Another group is P-poor and the Hf content in accessory zircon is high (up to 35 wt.% HfO2). Both types of intrusions may occur within a single orogen as demonstrated by the example of the Hercynian magmatism in the Erzgebirge/Krušné hory region (Germany/Czech Republic).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbarin, B. (1999) A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46, 605626.CrossRefGoogle Scholar
Bau, M. (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lathanide tetrad effect. Contributions to Mineralogy and Petrology, 123, 323333.CrossRefGoogle Scholar
Belousova, E.A., Griffin, W.L., O’Reilly, S.Y. and Fisher, N.I. (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143, 602622.CrossRefGoogle Scholar
Bibikova, E.V., Senin, V.G. and Legkov, G.A. (1991) Geochemicaland age heterogeneity of accessory zircon from the Novopavlovsk complex, Ukrainian shield, Geokhimiya, 14261436 (in Russian).Google Scholar
Breiter, K., Förster, H.J. and Seltmann, R. (1999) Variscan silicic magmatism and related tin-tungsten mineralization in the Erzgebirge-Slavkovsky les metallogenetic province. Mineralium Deposita, 34, 505521.CrossRefGoogle Scholar
Cassedanne, J.P., Baptista, A. and Černý, P. (1985) Zircon hafnifére, samarskite et columbite d’une pegmatite du Rio Doce, Minas Gerais, Brésil. The Canadian Mineralogist, 23, 663667.Google Scholar
Černý, P. and Siivola, J. (1980) The Tanco pegmatite at Bernic Lake, Manitoba. XII. Hafnian zircon. The Canadian Mineralogist, 18, 313321.Google Scholar
Charoy, B. and Raimbault, L. (1994) Zr-, Th-, and REErich biotite differentiates in the A-type granite pluton of Suzhou (Eastern China): the key role of fluorine. Journal of Petrology, 35, 919962.CrossRefGoogle Scholar
Clarke, D.B. (1992) Granitoid Rocks. Chapman & Hall, London, 283 pp.Google Scholar
Correia Neves, J.M., Lopes Nunes, J.E. and Sahama, T.G. (1974) High hafnium members of the zirconhafnon series from the granite pegmatites of Zambé zia, Mozambique. Contributions to Mineralogy and Petrology, 48, 7380.CrossRefGoogle Scholar
Ellison, A.J. and Hess, P.C. (1986) Solution behavior of +4 cations in high silica melts: petrologic and geochemicalim plications. Mineralogy and Petrology, 94, 343351.CrossRefGoogle Scholar
Fontan, F., Monchoux, P. and Autefage, F. (1980) Présence de zircons hafniféres dans des pegmatites granitique des Pyrénées Ariégeoises; leur relation avec les niobo-tantalates. Bulletin de Minéralogy, 103, 8891.CrossRefGoogle Scholar
Geisler, T. and Schleicher, H. (2000) Improved U-ThtotalPb dating of zircons by electron microprobe using a simple new background modelling procedure and Ca as a chemicalcriterion of fluid-induced UTh- Pb discordance in zircon. Chemical Geolology, 163, 269285.CrossRefGoogle Scholar
Gottfried, D. and Waring, C.L. (1964) Hafnium content and Hf/Zr ratio in zircon from the Southern California Batholith. US Geological Survey Professional Paper, 501, B88B91.Google Scholar
Hanchar, J.M. and Miller, C.F. (1993) Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: implications for interpretation of complex crustal histories. Chemical Geology, 110, 113.CrossRefGoogle Scholar
Kempe, U. (2003) Precise electron microprobe age determination in altered uraninite: consequences on the intrusion age and the metallogenic significance of the Kirchberg granite (Erzgebirge, Germany). Contributions to Mineralogy and Petrology, 145, 107118.CrossRefGoogle Scholar
Kempe, U., Gruner, T., Renno, A.D. and Wolf, D. (1997) Hf-rich zircons in rare-metalbearin g granites: Magmatic or metasomatic origin? Pp. 643646 in Mineral Deposits: Researchand Exploration. Where do they Meet? (Papunen, H., editor). Balkema, Rotterdam.Google Scholar
Kempe, U., Götze, J., Dandar, S. and Habermann, D. (1999a) Magmatic and metasomatic processes during formation of the Nb-Zr-REE deposits Khaldzan Buregte and Tsakhir (Mongolian Altai): Indications from a combined CL-SEM study. Mineralogical Magazine, 63, 165177.CrossRefGoogle Scholar
Kempe, U., Wolf, D., Ebermann, U. and Bombach, K. (1999b) 330 Ma Pb/Pb single zircon evaporation ages for the Altenberg Granite Porphyry, Eastern Erzgebirge (Germany): implications for Hercynian granite magmatism and tin mineralisation. Zeitschrift für geologische Wissenschaften, 27, 385400.Google Scholar
Kempe, U., Gruner, T., Nasdala, L. and Wolf, D. (2000) Relevance of cathodoluminescence for the interpretation of U-Pb zircon ages, with an example of an application to a study of zircons from the Saxonian Granulite Complex, Germany. Pp. 415455 in: Cathodoluminescence in Geosciences (Pagel, M., Barbin, V., Blanc, P. and Ohnenstetter, D., editors). Springer-Verlag, Berlin, Heidelberg, New York.CrossRefGoogle Scholar
Levinson, A.A. and Borup, R.A. (1960) High hafnium zircon from Norway. American Mineralogist, 45, 562565.Google Scholar
Linnen, R.L. (1998) The solubility of Nb-Ta-Zr-Hf-W in granitic melts with Li and Li+F: constraints for mineralization in rare metal granites and pegmatites. Economic Geology, 93, 10131025.CrossRefGoogle Scholar
Linnen, R.L. and Keppler, H. (2002) Melt composition controlof Zr/Hf fractionation in magmatic processes. Geochimica et Cosmochimica Acta, 66, 32933301.CrossRefGoogle Scholar
Lyakhovich, V.V., Uger, P. and Siman, P. (1992) Hafnium and yttrium in zircon from a borehole through the El’dzhurda granite massif (Northern Caucasus). Geokhimiya, 15021507 (in Russian).Google Scholar
Lyakhovich, V.V. and Vishnevsky, A.A. (1990) Zirconium and hafnium in zircon from Rapakivi: relations to the genesis of ovoids. Geokhimiya, 10751083 (in Russian).Google Scholar
Pointer, C.M., Ashworth, J.R. and Ixer, R.A. (1988) The zircon-thorite mineralgroup in metasomatized granite, Ririwai, Nigeria. 2. Zoning, alteration and exsolution in zircon. Mineralogy and Petrology, 39, 2137.CrossRefGoogle Scholar
Pupin, J.P. (1980) Zircon and granite petrology. Contributions to Mineralogy and Petrology, 73, 207220.CrossRefGoogle Scholar
Pupin, J.P. (1992) Les zircons des granites océaniques et continentaux: couplage typologie-géochimie des éléments en traces. Bulletin de la Societe de Geologie de France, 163, 495507.Google Scholar
Pupin, J.P. (2000) Granite genesis related to geodynamics from Hf-Y in zircon. Transactions of the Royal Society of Edinburgh, Earth Sciences, 91, 245256.CrossRefGoogle Scholar
Quadrado, R. and Lima de Faria, J. (1966) High hafnium zircon from Namacotche, Alto Ligonha, Mozambique. Garcia de Orta, 14, 311316.Google Scholar
Raimbault, L., Chary, B., Cuney, M. and Pollard, P.J. (1991) Comparative geochemistry of Ta-bearing granites. Pp. 793796 in: Source, Transport and Deposition of Metals, abstracts (Pageland, M. Leroy, G., editors). Balkema, Rotterdam.Google Scholar
Renno, A. (1997) Zur Petrogenese der Albitgranite von Abu Dabbab und Nuweibi, Central Eastern Desret, Ägypten. Logos, Berlin, 138 pp.Google Scholar
Sala, M. (1999) Geochemische und mineralogische Untersuchungen an alterierten Gesteinen aus dem Kuppelbereichd er Lagerstätte Zinnwald (Osterzgebirge). Unpublished PhD thesis, TU Bergakademie Freiberg, Germany, 96 pp.Google Scholar
Schermain, A., Haunschmid, B., Schubert, G., Frasel, G. and Finger, F. (1992) Diskriminierung von S-Typ und I-Typ Graniten auf der Basis zirkontypologischer Untersuchungen. Frankfurter Geowissenschaftliche Abhandlungen, Serie A, 11, 149153.Google Scholar
Suzuki, K., Kouta, H. and Nagasawa, H. (1992) Hf-Zr interdiffusion in single crystal zircon. Geochemical Journal, 26, 99104.CrossRefGoogle Scholar
Taylor, R.P. (1992) Petrological and geochemical characteristics of the Pleasant Ridge zinnwalditetopaz granite, southern New Brunswick, and comparisons with other topaz-bearing felsic rocks. The Canadian Mineralogist, 30, 895920.Google Scholar
Uher, P., Breiter, K., Kleka, M. and Pivec, E. (1998) Zircon in highly evolved Hercynian Homolka granite, Moldanubian zone, Czech Republic: indicator of magma source and petrogenesis. Geologica Carpathica, 49, 151160.Google Scholar
Uher, P. and Černý, P. (1998) Zircon in Hercynian granite pegmatites of the Western Carpathians, Slovakia. Geologica Carpathica, 49, 261270.Google Scholar
von Knorring, O. and Hornung, G. (1961) Hafnian zircons. Nature, 190, 10981099.CrossRefGoogle Scholar
Wang, R.C., Fontan, F. and Monchoux, P. (1992) Minéraux disséminés comme indicateurs du caractère pegmatitique du granite de Beauvoir, massif d’Échassières, Allier, France. The Canadian Mineralogist, 30, 763770.Google Scholar
Wang, R.C., Fontan, F., Xu, S.J., Chen, X.M. and Monchoux, P. (1996) Hafnian zircon from the apical part of the Suzhou granite, China. The Canadian Mineralogist, 34, 10011010.Google Scholar
Wang, R.C., Zhao, G.T., Lu, J.J., Chen, X.M., Xu, S.J. and Wang, D.Z. (2000) Chemistry of Hf-rich zircons from the Laoshan I- and A-type granites, Eastern China. Mineralogical Magazine, 64, 867877.CrossRefGoogle Scholar
Wark, D.A. and Miller, C.F. (1993) Accessory mineral behaviour during differentiation of a granite suite: monazite, xenotime and zircon in the Sweetwater Wash pluton, southeastern California U.S.A. Chemical Geology, 110, 4967.CrossRefGoogle Scholar
Zaraisky, G.P., Aksyuk, A.M., Fedkin, A.V. and Seltmann, R. (2001) The Zr/Hf ratio as an indicator of granite magma evolution of rare metal deposits related to post-orogenic granites. Pp. 501504 in: Mineral Deposits at the Beginning of the 21st Century (Piestrzynski, A. et al., editors). Swets and Zeitlinger Publishers, Lisse, The Netherlands.Google Scholar