Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-24T11:30:12.889Z Has data issue: false hasContentIssue false

Diagenetic volume-for-volume replacement: force of crystallization and depression of dissolution

Published online by Cambridge University Press:  05 July 2018

Jose Maria Minguez
Affiliation:
Departamento de Fisica Aplicada II, Universidad del País Vasco, 48080 Bilbao, Spain
Javier Elorza
Affiliation:
Departamento de Mineralogía y Petrología, Universidad del País Vasco, 48080 Bilbao, Spain

Abstract

The concept of force of crystallization is combined with that of depression of dissolution to explain diagenetic volume-for-volume replacement in both cases, either when the pressure is increased in early sedimentary settings, or when it is diminished in a late exposure. Also, a new textural criterion is added to the three classical ones in order to recognize diagenetic volume-for-volume replacement, and calculations are carried out to estimate the speed of the replacement.

Type
Petrology and Geochemistry
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amiot, M., Floquet, M., and Mathey, B. (1983) Relations entre les trois domaines de sedimentation au Cretace superieur. In Vue sur le Cretace basco-cantabrique et nord-iberique. Une marge et son arriere-pays, ses environnements sedimentaires. Memoires Geologiques de l'Universite de Dijon, 9, 167-76.Google Scholar
Dewers, T. and Ortoleva, P. (1989) Mechano-chemical coupling via texture dependent solubility in stressed rocks. Geochim. Cosmochim. Ada, 53, 1243-58.Google Scholar
Dewers, T. and Ortoleva, P. (1990a) Geochemical self-organization III: A mechano-chemical model of metamorphic differentiation: Amer. J. Sci., 290, 473-521.Google Scholar
Dewers, T. and Ortoleva, P. (19906) Force of crystallization during the growth of siliceous concentrations. Geology, 18, 204–7.2.3.CO;2>CrossRefGoogle Scholar
Elorza, J. and Bustillo, M. A. (1989) Early and late diagenetic chert in carbonate turbidites of the Senonian flysch, N. E. Bilbao, Spain. In Siliceous Deposits of the Tethys and Pacific Regions, (J. R. Hein and J. Obradovic, eds.), Springer-Verlag, 93-105.Google Scholar
Elorza, J. and Orue-Etxebarria, X. (1985) An example of silicification in Gryphaea sp. shells from Lafio (south of Vitoria): 6th European Regional Meeting of Sedimentology. (I. A. S. Lleida, ed.) Abstracts, 556-9.Google Scholar
Elorza, J., Garcia-Garmilla, F., Arriortua, M. I. and Bustillo, M. A. (1991) Chert in Marine Environ-ments In Marine and Continental Fades with Siliceous Sedimentary Rocks (J. Elorza et al., eds.), 1-92 Vlth International Flint Symposium. Madrid. Excursion Guidebook.Google Scholar
Folk, R. L., and Pittman, J. S. (1971) Length-Slow Chalcedony: A New Testament for Vanished Evaporites. J. Sed. Petrol., 41, 1045–58.Google Scholar
Maliva, R. G., and Siever, R. (1988a) Diagenetic replacement controlled by force of crystallization. Geology, 16, 688-91.2.3.CO;2>CrossRefGoogle Scholar
Maliva, R. G., and Siever, R. (19886) Mechanism and controls of silicification of fossils in limestones. J. Geol., 96, 387–98.CrossRefGoogle Scholar
Ramberg, H. (1947) The force of crystallization as a well definable property of crystal. Geol. For. Stockh. Forh., 69, 189–94.CrossRefGoogle Scholar
Weyl, P. K. (1959) Pressure solution and the force of crystallization-A phenomenological theory. J. Geophys. Res., 64, 2001–25.CrossRefGoogle Scholar