Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-27T05:17:41.652Z Has data issue: false hasContentIssue false

Crystal-chemical characterisation and spectroscopy of fluorcarletonite and carletonite

Published online by Cambridge University Press:  03 March 2023

Ekaterina Kaneva*
Affiliation:
Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky Str. 1A, 664033, Irkutsk, Russia
Alexander Bogdanov
Affiliation:
Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky Str. 1A, 664033, Irkutsk, Russia
Tatiana Radomskaya
Affiliation:
Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky Str. 1A, 664033, Irkutsk, Russia
Olga Belozerova
Affiliation:
Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky Str. 1A, 664033, Irkutsk, Russia
Roman Shendrik
Affiliation:
Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky Str. 1A, 664033, Irkutsk, Russia
*
*Corresponding author: Ekaterina Kaneva; Email: kev604@mail.ru

Abstract

The minerals of carletonite group, fluorcarletonite, KNa4Ca4[Si8O18](CO3)4(F,OH)·H2O and carletonite, Na4Ca4[Si8O18](CO3)4(OH,F)·H2O, were investigated using a multi-method approach. A detailed comparative chemical study of the minerals was carried out using electron probe microanalysis and Fourier transform infrared spectroscopy. Using X-ray techniques and the results obtained, geometrical and distortion characteristics of the mineral structures are calculated and the successful crystal-structure refinement of these two natural compounds are given. Using spectroscopic and luminescence methods and ab initio calculations, it is shown that hole defects (CO3)•– are responsible for the colouration of the samples studied. Luminescence due to 5d–4f transition in Ce3+ ions is observed in both investigated compounds. Moreover, luminescence attributed to intrinsic luminescence, corresponding to the decay of electronic excitations of (CO3)2– complexes in the carletonite sample, is registered for the first time in phyllosilicates. An analysis of the optical absorption spectra and g-tensor values suggests that (CO3)•– defects in the crystal structure are localised in the C1 positions. Identification of these specific properties for these sheet silicates, with a two-dimensional infinite tetrahedral polymerisation, indicates that carletonites could be prospective materials for novel phosphors and luminophores.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: G. Diego Gatta

References

Balić-Žunić, T. and Makovicky, E. (1996) Determination of the centroid or ‘the best centre’ of a coordination polyhedron. Acta Crystallographica, B52, 7881, https://doi.org/10.1107/S0108768195008251CrossRefGoogle Scholar
Balić-Žunić, T. and Vicković, I. (1996) IVTON – program for the calculation of geometrical aspects of crystal structures and some crystal chemical applications. Journal of Applied Crystallography, 29, 305306, https://doi.org/10.1107/S0021889895015081Google Scholar
Betteridge, P.W., Carruthers, J.R., Cooper, R.I., Prout, K. and Watkin, D.J. (2003) Crystals version 12: Software for guided crystal structure analysis. Journal of Applied Crystallography, 36, 1487, https://doi.org/10.1107/S0021889803021800Google Scholar
Bisby, R.H., Johnson, S.A., Parker, A.W. and Tavender, S.M. (1998) Time-resolved resonance Raman spectroscopy of the carbonate radical. Journal of the Chemical Society, Faraday Transactions, 94, 20692072, https://doi.org/10.1039/A801239CGoogle Scholar
Breese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solid. Acta Crystallographica, B47, 192197, https://doi.org/10.1107/S0108768190011041Google Scholar
Bruker (2007) APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Chantry, G.W., Horsfield, A., Morton, J.R. and Whiffen, D.H. (1962) The structure, electron resonance and optical spectra of trapped CO3 and NO3. Molecular Physics, 5, 589599, https://doi.org/10.1080/00268976200100671CrossRefGoogle Scholar
Chao, G.Y. (1971) Carletonite, KNa4Ca4Si8O18(CO3)4(F,OH)⋅H2O, a new mineral from Mount St. Hilaire, Quebec. American Mineralogist, 56, 18551866.Google Scholar
Chao, G.Y. (1972) The crystal structure of carletonite, KNa4Ca4Si8O18(CO3)4(F,OH)⋅H2O, a double-sheet silicate. American Mineralogist, 57, 765778.Google Scholar
Fernández-Rodríguez, L., Durán, A. and Pascual, M.J. (2021) Silicate-based persistent phosphors. Open Ceramics, 7, 100150, https://doi.org/10.1016/j.oceram.2021.100150Google Scholar
Gaft, M., Reisfeld, R. and Panczer, G. (2015) Modern Luminescence Spectroscopy of Minerals and Materials. Springer, USA.CrossRefGoogle Scholar
Gagné, O.C. and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578, https://doi.org/10.1107/S2052520615016297Google Scholar
Garlick, G.F.J. and Gibson, A.F. (1948) The electron trap mechanism of luminescence in sulphide and silicate phosphors. Proceedings of the Physical Society, 60, 574590, https://doi.org/10.1088/0959-5309/60/6/308Google Scholar
Hawthorne, F.C. (1992) The role of OH and H2O in oxide and oxysalt minerals. Zeitschrift für Kristallographie, 201, 183206, https://doi.org/10.1524/zkri.1992.201.3-4.183Google Scholar
Hawthorne, F.C., Uvarova, Y.A. and Sokolova, E. (2019) A structure hierarchy for silicate minerals: sheet silicates. Mineralogical Magazine, 83, 355, https://doi.org/10.1180/mgm.2018.152Google Scholar
Kaneva, E. and Shendrik, R. (2022) Radiation defects and intrinsic luminescence of cancrinite. Journal of Luminescence, 243, 118628, https://doi.org/10.1016/j.jlumin.2021.118628Google Scholar
Kaneva, E., Radomskaya, T., Suvorova, L., Sterkhova, I. and Mitichkin, M. (2020a) Crystal chemistry of fluorcarletonite, a new mineral from the Murun alkaline complex (Russia). European Journal of Mineralogy, 32, 137146, https://doi.org/10.5194/ejm-32-137-2020Google Scholar
Kaneva, E., Shendrik, R., Mesto, E., Bogdanov, A. and Vladykin, N. (2020b) Spectroscopy and crystal chemical properties of NaCa2[Si4O10]F natural agrellite with tubular structure. Chemical Physics Letters, 738, 136868, htps://doi.org/10.1016/j.cplett.2019.136868Google Scholar
Kaneva, E.V., Shendrik, R.Yu., Radomskaya, T.A. and Suvorova, L.F. (2020c) Fedorite from Murun alkaline complex (Russia): Spectroscopy and crystal chemical features. Minerals, 10, 702, https://doi.org/10.3390/min10080702Google Scholar
Kaneva, E., Radomskaya, T. and Shendrik, R. (2022) Fluorcarletonite – a new blue gem material. Journal of Gemmology, 38, 342351, https://doi.org/10.15506/JoG.2022.38.4.342CrossRefGoogle Scholar
Kasay, G.M., Bolarinwa, A.T., Aromolaran, O.K., Nzolang, C. and Mambo, V.S. (2021) A review of the geological settings, ages and economic potentials of carbonatites in the Democratic Republic of Congo. Transactions of the Institute of Mining and Metallurgy B: Applied Earth Science, 130, 143160, https://doi.org/10.1080/25726838.2021.1911585Google Scholar
Kresse, G. and Hafner, J. (1993) Ab initio molecular dynamics for liquid metals. Physical Review B – Condensed Matter and Materials Physics, 47, 558561, https://doi.org/10.1016/0022–3093(95)00355-XGoogle Scholar
Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276, https://doi.org/10.1107/S0021889811038970Google Scholar
Moseley, J.T., Cosby, P.C. and Peterson, J.R. (1976) Photodissociation spectroscopy of CO3−. Journal of Chemical Physics, 65, 2512, https://doi.org/10.1063/1.433454Google Scholar
Neese, F. (2012) The ORCA program system. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2, 7378, https://doi.org/10.1002/wcms.81Google Scholar
Olsen, J.F. and Burnelle, L. (1970) Distortions in the trigonally symmetric radicals nitrogen and carbon trioxide. Journal of the American Chemical Society, 92, 36593664, https://doi.org/10.1021/ja00715a019Google Scholar
Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X. and Burke, K. (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Physical Review Letters, 100, https://doi.org/10.1103/PhysRevLett.100.136406Google Scholar
Pinheiro, M., Krambrock, K., Guedes, K. and Spaeth, J.-M. (2007) Optically-detected magnetic resonance of molecular color centers (CO3)•– and NO3 in gamma-irradiated beryl. Physica Status Solidi C, 4, 12931296, https://doi.org/10.1002/ pssc.200673825CrossRefGoogle Scholar
Renner, B. and Lehmann, G. (1986) Correlation of angular and bond length distortions in TO4 units in crystals. Zeitschrift für Kristallographie, 175, 4359. https://doi.org/10.1524/zkri.1986.175.1-2.43Google Scholar
Rigaku (2018) CrysAlisPro Software system, version 1.171.39.46. Rigaku Oxford Diffraction, Oxford, UK.Google Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: A quantitative measure of distortion in coordination polyhedra. Science, 172, 567570, https://doi.org/10.1126/science.172.3983.567CrossRefGoogle ScholarPubMed
Serway, R. and Marshall, S. (1967) Electron spin resonance absorption spectra of (CO3)•– and (CO3)3– molecule – ions in irradiated single-crystal calcite. Journal of Chemical Physics, 46, 19491952, https://doi.org/10.1063/1.1840958Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767, https://doi.org/10.1107/S0567739476001551Google Scholar
Shendrik, R., Kaneva, E., Radomskaya, T., Sharygin, I. and Marfin, A. (2021) Relationships between the structural, vibrational, and optical properties of microporous cancrinite. Crystals, 11, 3280, https://doi.org/10.3390/cryst11030280Google Scholar
Shkrob, I. (2002) Ionic species in pulse radiolysis of supercritical carbon dioxide. 2. Ab initio studies on the structure and optical properties of (CO2)n+, (CO2)2–, and CO3 ions. Journal of Physical Chemistry A, 106, 1187111881, https://doi.org/10.1021/jp0214918Google Scholar
Smakula, A. (1930) Über Erregung und Entfärbung lichtelektrisch leitender Alkalihalogenide. Zeitschrift für Physik, 59, 603614, https://doi.org/10.1007/BF01344801Google Scholar
Stephens, P.J., Devlin, F., Chabalowski, C. and Frisch, M.J. (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. Journal of Physical Chemistry, 98, 45,1162311627. https://doi.org/10.1021/j100096a001Google Scholar
Wang, X., Chen, Y., Liu, F. and Pan, Z. (2020) Solar-blind ultraviolet-C persistent luminescence phosphors. Nature Communications, 11, 18, https://doi.org/10.1038/s41467-020-16015-zGoogle Scholar
Supplementary material: File

Kaneva et al. supplementary material

Kaneva et al. supplementary material

Download Kaneva et al. supplementary material(File)
File 928.8 KB