Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-30T05:38:56.996Z Has data issue: false hasContentIssue false

The crystal structure of manganoan kilchoanite, Ca2.33Mn0.67Si2O7: a site-preference rule for the substitution of Mn for Ca

Published online by Cambridge University Press:  05 July 2018

Mitsuyoshi Kimata*
Affiliation:
Institute of Geoscience, The University of Tsukuba, Ibaraki 305, Japan

Abstract

The crystal structure of a Mn-bearing kilchoanite, Ca2.33Mn0.67Si2O7, orthorhombic, I2cm, a = 11.356(2), b = 5.007(1), c = 21.817(1)Å, Z = 8, was refined using single-crystal X-ray data to an R value of 3.1% for 1725 unique reflections. It is isostructural with kilchoanite, Ca3Si2O7, and shows a partial disorder of Mn and Ca over the four octahedral sites. On a basis of occupancy refinement, the M3 site (〈M3-O〉 = 2.307 Å) contains 0.508Ca and 0.492Mn, and the M4 site (〈M4-O〉 = 2.346 Å) contains 0.822Ca and 0.178Mn, whereas the M1 and M2 sites (〈M1-O〉 = 2.538 Å, (〈M2-O〉 = 2.380 Å) are occupied only by Ca. Substitution of Mn cations for Ca can be interpreted as taking place on the following sites in preferential order: (1) the smaller Ca site; (2) the less distorted Ca site; (3) the Ca site showing a loss in neutrality of formal electrostatic valence. A statistical survey of Si-O-Si angles observed in silicates containing [Si2O7] groups confirms that these angles become smaller with an increase in the coordination number of the bridging oxygen. Oversaturation of electrostatic bond-strength to the bridging oxygen in some groups of the crystal structures with two tetrahedra sharing a vertex (pyro-anion, ), which is caused by increase in the coordination number of the bridging oxygen and/or by T cations with larger charge than 4+, results in longer T-Obr bonds length and in smaller T-Obr-T angles.

Type
Silicate Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrell, S. O. (1965) Mineral. Mag. 34, 1-15.Google Scholar
Agrell, S. O. and Gay, P. (1961) Nature 189, 743.CrossRefGoogle Scholar
Bauer, W. H. (1980) Acta Crystallogr. B36, 2198–202.CrossRefGoogle Scholar
Belov, N. V., Otroshchenko, L. P. and Simonov, V. I. (1984) Sov. Phys. Crystallogr. 29(1), 24-7.Google Scholar
Bissert, G. and Liebau, F. (1970) Acta Crystallogr. B26, 233-40.CrossRefGoogle Scholar
Brown, I. D. (1981) I. Structure and Bonding in Crystals 2 (O'Keefe, M. and Navrotsky, A., eds.). Academic Press, New York, 130.CrossRefGoogle Scholar
Calvo, C. (1967)Acta Crystallogr. 23, 289-95.Google Scholar
Donnay, G. and Allmann, R. (1968) Acta Crystallogr. B24, 845-55.CrossRefGoogle Scholar
Doyle, P. A, and Turner, P. S. (1968) Ibid. A24, 390-7.Google Scholar
Felsche, J. (1972) Naturwissensch. 59, 35-6.CrossRefGoogle Scholar
Finger, I. W. and Prince, E. (1975). Nat. Bur. Stand. U.S. Tech. Note 854.Google Scholar
Freed, R. L. and Peacor, D. R. (1967) Am. Mineral. 52, 709.Google Scholar
Gibbs, G. V. (1982) Ibid. 67, 421-50.Google Scholar
Glasser, F. P. (196t) Am. J. Sci. 259, 46-59.CrossRefGoogle Scholar
Grossman, L. (1972) Geochim. Cosmochim. Acta 36, 579-619.CrossRefGoogle Scholar
Hawthorne, F. C. and Calvo, C. (1978) J. Solid State Chem. 26, 345-55.CrossRefGoogle Scholar
Henmi, K., Kusachi, I. and Henmi, C. (1975) J. Mineral. Soc. Japan 12, 205-14.Google Scholar
Hesse, K. F. and Stumpel, G. (1986) Z. Kristallogr. 177, 143-8.CrossRefGoogle Scholar
International Tables for X-ray Crystallography (1974) Vol. 4. The Kynoch Press, Birmingham, England.Google Scholar
Kimata, M. (1984. Z. Kristallogr. 163, 295-305.Google Scholar
International Tables for X-ray Crystallography (1986) Mineral. Mag. 50, 511-5.CrossRefGoogle Scholar
International Tables for X-ray Crystallography and Ii, N. (1981) Neues Jahrb. Mineral. Mh. 1-10.Google Scholar
Kusachi, I., Henmi, C., Kawahara, A. and Henmi, K. (1975) Min. J. (Japan) 8, 38-47.Google Scholar
Liebau, F. (1985) Structural Chemistry of Silicates, Springer-Verlag, Berlin Heidelberg, p. 347.CrossRefGoogle Scholar
Main, P. (1980) MULTAN80. University of Cambridge, England.Google Scholar
McDonald, W. S. and Cruickshank, D. W. J. (1967) Z. Kristallogr. 124, 180-91.CrossRefGoogle Scholar
Pauling, L. (1960) The Nature of Chemical Bond. Cornell University Press.Google Scholar
Peacor, D. R. (1972) Manganese A. In Handbook of Geochemistry (Wedepohl, K. H., ed.), Springer-Verlag, Berlin.Google Scholar
Robertson, B. E. and Calvo, C. (1970) J. Solid State Chem. 1, 120-33.CrossRefGoogle Scholar
Robinson, K., Gibbs, G. V. and Ribbe, P. H. (1971) Science 172, 567-70.CrossRefGoogle Scholar
Saburi, S., Kusachi, I., Henmi, C., Kawahara, A., Henmi, K. and Kawada, I. (1976) Min. J. (Japan) 8, 240-6.Google Scholar
Taylor, H. F. W. (1971) Mineral. Mag. 38, 26-31.CrossRefGoogle Scholar
Warren, R. W. and Mazelsky, R. (1974) Phys. Rev. B10, 1925.CrossRefGoogle Scholar
Weiss, Z., Bailey, S. W. and Rieder, M. (1981) Am. Mineral. 66, 561-7.Google Scholar
Wuensch, B. J. and Prewitt, C. T. (1965) Z. Kristallogr. 122, 24-59.CrossRefGoogle Scholar