Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-30T04:28:27.396Z Has data issue: false hasContentIssue false

Crystal structure and formula revision of deliensite, Fe[(UO2)2(SO4)2(OH)2](H2O)7

Published online by Cambridge University Press:  05 July 2018

J. Plášil*
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 2, CZ-18221 Prague 8, Czech Republic
J. Hauser
Affiliation:
Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
V. Petříček
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 2, CZ-18221 Prague 8, Czech Republic
N. Meisser
Affiliation:
Musée de Géologie and Laboratoire des Rayons-X, Institut de Minéralogie et de Géochimie, UNIL, Anthropole, CH-1015 Lausanne-Dorigny, Switzerland
S. J. Mills
Affiliation:
Geosciences, Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia
R. Škoda
Affiliation:
Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37, Brno, Czech Republic
K. Fejfarová
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 2, CZ-18221 Prague 8, Czech Republic
J. Čejka
Affiliation:
Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, 193 00 Prague 9 - Horní Počernice, Czech Republic
J. Sejkora
Affiliation:
Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, 193 00 Prague 9 - Horní Počernice, Czech Republic
J. Hloušek
Affiliation:
U Roháčových kasáren 24, CZ-100 00, Praha 10, Czech Republic
J.-M. Johannet
Affiliation:
Richemont, F-79250 Nueil-les-Aubiers, France
V. Machovič
Affiliation:
Institute of Chemical Technology, Prague, Technická 5, CZ-16628, Prague 6, Czech Republic Institute of Rock Structures and Mechanics ASCR, v.v.i., V Holešovičkách 41, CZ-18209, Prague 8, Czech Republic
L. Lapčák
Affiliation:
Institute of Chemical Technology, Prague, Technická 5, CZ-16628, Prague 6, Czech Republic
*
*E-mail: plasil@fzu.cz

Abstract

The crystal structure of deliensite, Fe[(UO2)2(SO4)2(OH)2](H2O)7, was solved by direct methods and refined to R1 = 6.24% for 5211 unique observed reflections [Iobs > 3σ(I)], on a crystal that was found to consist of rotational and inversion (merohedral) twins, from Jeroným mine, Abertamy in the Czech Republic. The presence of four twin domains was taken into account in the refinement. The structure is orthorhombic, space group Pnn2, with unit-cell parameters a = 15.8514(9), b = 16.2478(7), c = 6.8943(3) Å, V = 1775.6(1) Å3 and Z = 4. The crystal structure of deliensite contains uranyl-sulfate sheets with a phosphuranylite topology, consisting of dimers of edge-sharing uranyl pentagonal bipyramids linked by corner-sharing with sulfate tetrahedra. The sheets lie in the (100) plane and are decorated by [Fe2+O(H2O)5] octahedra; two weakly bonded H2O molecules are present in the interlayer. The [Fe2+O(H2O)5] octahedron is linked directly to the sheet via the uranyl oxygen atom. Adjacent sheets are linked by hydrogen bonds only. The sheet topology and geometrical isomerism is discussed and a comparison of the composition obtained from electron-probe microanalysis, powder-diffraction data, Raman and infrared spectra of deliensite samples from Mas d'Alary, Lodève, France; L'Ecarpière mine, Gétigné, France; and several localities at Jáchymov, Western Bohemia, Czech Republic is made.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bartlett, J.R. and Cooney, R.P. (1989) On the determination of uranium-oxygen bond lengths in dioxouranium(VI) compounds by Raman spectroscopy. Journal of Molecular Structure, 193, 295300.CrossRefGoogle Scholar
Birch, W.D., Mills, S.J., Maas, R. and Hellstrom, J.C. (2011) A chronology for Late Quaternary weathering in the Murray Basin, southeastern Australia: evidence from 230Th/U dating of secondary uranium phosphates in the Lake Boga and Wycheproof granites, Victoria. Australian Journal of Earth Sciences, 58, 835845.Google Scholar
Brown, I.D. (1981) The bond-valence method: an empirical approach to chemical structure and bonding. Pp. 130.in: Structure and Bonding in Crystals II (M. O’Keeffe and A. Navrotsky, editors). Academic Press, New York.Google Scholar
Brown, I.D. (2002) The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press, Oxford, UK, 230 pp.Google Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244247. [including updated parameters from http://www.ccp14.ac.uk/ccp/ web-mirrors/i-d-brown/].CrossRefGoogle Scholar
Brown, I.D. and Shannon, R.D. (1973) Empirical bondstrength bond-length curves for oxides. Acta Crystallographica, A29, 266282.CrossRefGoogle Scholar
Brugger, J., Burns, P.C. and Meisser, N. (2003) Contribution to the acid drainage of uranium minerals: marecottite and the zippeite group. American Mineralogist, 88, 676685.CrossRefGoogle Scholar
Burns, P.C. (2001) A new uranyl sulfate chain in the structure of uranopilite. The Canadian Mineralogist, 39, 11391146.CrossRefGoogle Scholar
Burns, P.C. (2005) U6+ minerals and inorganic compounds: insights into an expanded structural hierarchy of crystal structures. The Canadian Mineralogist, 43, 18391894.CrossRefGoogle Scholar
Burns, P.C., Ewing, R.C. and Hawthorne, F.C. (1997) The crystal chemistry of hexavalent uranium: polyhedron geometries, bond-valence parameters, and polymerization of polyhedra. The Canadian Mineralogist, 35, 15511570.Google Scholar
Caubel, P. (1998) Le Mas Lavayre, Hérault, un deuxiéme gıˆte de deliensite. Le Régne Minéral, 22, 1417.Google Scholar
Čejka, J. (1999) Infrared spectroscopy and thermal analysis of the uranyl minerals. Pp. 521622.in: Uranium: Mineralogy, Geochemistry and the Environment (P.C. Burns and R. Finch, editors). Reviews in Mineralogy, 38. Mineralogical Society of America, Washington DC.Google Scholar
Čejka, J. (2004) Vibrational spectroscopy of uranyl minerals - infrared and Raman spectra of uranyl minerals. I. Uranyl, UO2 2+. Bulletin mineralogickopetrologicke ´ho Oddeˇlení Národního Muzea (Praha), 12, 4451. [in Czech].Google Scholar
Čejka, J. (2007) Vibrational spectra of uranyl minerals - infrared and Raman spectra of uranyl minerals. III. Uranyl sulphates. Bulletin mineralogicko-petrologicke ´ho Oddeˇlení Národního Muzea (Praha), 1415. 4046. [in Czech].Google Scholar
Čejka, J., Urbanec, Z., Čejka, J. Jr and Mrázek, Z. (1988) Contribution to the thermal analysis and crystal chemistry of johannite Cu[(UO2)2(SO4)2 (OH)2]·8H2O. Neues Jahrbuch für Mineralogie, Abhandlungen, 159, 297309.Google Scholar
Chapot, G., Couprie, R., Dumas, J., Leblanc, P. and Kerouanton, J.-L. (1996) L’uranium Vendéen, 40 ans de recherches et d’exploitations miniéres dans le Massif Armoricain. Cahiers du Patrimoine, 45, 176187.Google Scholar
Chen, F., Ewing, R.C. and Clark, S.B. (1999) The Gibbs free energies and enthalpies of formation of U6+ phases: an empirical method of prediction. American Mineralogist, 84, 650664.Google Scholar
Deditius, A.P., Utsunomiya, S. and Ewing, R.C. (2008) The chemical stability of coffinite, USiO4·nH2O; 0<n<2, associated with organic matter: a case study from Grants uranium region, New Mexico, USA. Chemical Geology, 251, 3349.CrossRefGoogle Scholar
Doran, M.B., Cockbain, B.E. and O’Hare, D. (2005) Structural variation in organically templated uranium sulfate uorides. Dalton Transactions, 2005, 17741780.Google Scholar
Finch, R.J. and Murakami, T. (1999) Systematics and paragenesis of uranium minerals. Pp. 91179.in: Uranium: Mineralogy, Geochemistry and the Environment (P.C. Burns and R. Finch, editors). Reviews in Mineralogy, 38. Mineralogical Society of America, Washington DC.CrossRefGoogle Scholar
Frost, R.L. and Čejka, J. (2009) A Raman spectroscopic study of the uranyl mineral rutherfordine - revisited. Journal of Raman Spectroscopy, 40, 10961103.CrossRefGoogle Scholar
Halasyamani, P.S., Francis, R.J., Walker, S.M. and O’Hare, D. (1999) New layered uranium(VI) molybdates: syntheses and structures of (NH3(CH2)3NH3)(H3O)2(UO2)3(MoO4)5, C(NH2)3 (UO2)(OH)(MoO4), (C4H12N2)(UO2)(MoO4)2, and (C5H14N2 ) (UO2 ) (MoO4 ) 2·H2O. Inorganic Chemistry, 31, 278279.Google Scholar
Holland, T. and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 6577.CrossRefGoogle Scholar
Hooft, R.W.W., Straver, L.H. and Spek, A.L. (2008) Determination of absolute structure using Bayesian statistics on Bijvoet differences. Journal of Applied Crystallography, 41, 96103.Google ScholarPubMed
Hoppe, R. (1979) Effective coordination number (ECoN) and mean-fictive ionic radii (Mefir). Zeitschrift für Kristallographie, 150, 2352.CrossRefGoogle Scholar
Jensen, K.A., Palenik, C.S. and Ewing, R.C. (2002) U6+ phases in the weathering zone of the Bangombé U- deposit: observed and predicted mineralogy. Radiochimica Acta, 90, 761769.CrossRefGoogle Scholar
Jones, P.G. (1986) The determination of absolute structure. III. An ambiguity table for the noncentrosymmetric crystalclasses . Act a Crystallographica, A42, 57.Google Scholar
Krivovichev, S.V. (2004) Combinatorial topology of salts of inorganic oxoacids: zero-, one- and two dimensional units with corner-sharing between coordination polyhedra. Crystallography Reviews, 10, 185232.CrossRefGoogle Scholar
Krivovichev, S.V. (2009) Structural Crystallography of Inorganic Oxysalts. Oxford University Press, Oxford, UK, 320 pp.CrossRefGoogle Scholar
Krivovichev, S.V. (2010) Actinyl compounds with hexavalent elements (S, Cr, Se, Mo) - structural diversity, nanoscale chemistry, and cellular automata modelling. European Journal of Inorganic Chemistry, 2010, 25942603.CrossRefGoogle Scholar
Krivovichev, S.V. and Burns, P.C. (2003) Geometrical isomerism in uranyl chromates I. Crystal structures of (UO2)(CrO4)(H2O)2, [(UO2)(CrO4)(H2O)2](H2O) and [(UO2)(CrO4)(H2O)2]4(H2O)9. Zeitschrift für Kristallographie, 218, 568574.Google Scholar
Krivovichev, S.V. and Burns, P.C. (2007) Actinide compounds containing hexavalent cations of the VI group elements (S, Se, Mo, Cr, W). Pp. 95182.in: Structural Chemistry of Inorganic Actinide Compounds (S.V. Krivovichev, P.C. Burns and I.G. Tananaev, editors). Elsevier, Amsterdam.Google Scholar
Krivovichev, S.V., Gurzhii, V.V., Tananaev, I.G. and Myasoedov, B.F. (2006) Topology of inorganic complexes as a function of amine molecular structure in layered uranyl selenates. Doklady Physical Chemistry, 409, 228232.Google Scholar
Krivovichev, S.V., Gurzhii, V.V., Tananaev, I.G. and Myasoedov, B.F. (2009) Amine-templated uranyl selenates with chiral [(UO2)2(SeO4)3(H2O)]2- layers: topology, isomerism, structural relationships. Zeitschrift für Kristallographie, 224, 316324.CrossRefGoogle Scholar
Lane, M.D. (2007) Mid-infrared emission spectroscopy of sulfate and sulfate-bearing minerals. American Mineralogist, 92, 118.CrossRefGoogle Scholar
Libowitzky, E. (1999) Correlation of O-H stretching frequencies and O-H-O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.CrossRefGoogle Scholar
Meisser, N., Brugger, J. and Lahaye, Y. (2002) Mineralogy and acid-mine drainage of La Creusaz uranium prospect, Switzerland. Pp. 147150.in: Uranium Deposits: From their Genesis to the Environmental Aspects, Proceedings (B. Kříbek and J. Zeman, editors). Czech Geological Survey, Prague.Google Scholar
Mereiter, K. (1982) Die Kristallstrukturs des Johannits, Cu(UO2 ) 2(OH)2(SO4 ) 2·8H2O. Tschermaks Mineralogische und Petrologisches Mitteilungen, 30, 4757.CrossRefGoogle Scholar
Mereiter, K. (1986) Crystal structure and crystallographic properties of a schröckingerite from Joachimsthal. Tschermaks Mineralogischen und Petrographischen Mitteillungen, 35, 118.CrossRefGoogle Scholar
Mills, S.J., Birch, W.D., Kolitsch, U., Mumme, W.G. and Gr ey, I . E . ( 2 008a ) Lak ebogai t e , CaNaFe3+ 2 H(UO2)2(PO4)4(OH)2(H2O)8, a new uranyl phosphate with a unique crystal structure from Victoria, Australia. American Mineralogist, 93, 691697.CrossRefGoogle Scholar
Mills, S.J., Birch, W.D., Maas, R., Phillips, D. and Plimer, I.R. (2008b) Lake Boga Granite, northwestern Victoria: mineralogy, geochemistry and geochronology. Australian Journal of Earth Sciences, 55, 281299.CrossRefGoogle Scholar
Nakamoto, K. (1986) Infrared and Raman Spectra of Inorganic and Coordination Compounds. John Wiley and Sons, New York.Google Scholar
Oelkers, E.H. and Montel, J. (2008) Phosphates and nuclear waste storage. Elements, 4, 113116.CrossRefGoogle Scholar
Ok, K.M., Baek, J., Halasyamani, P.S. and O’Hare, D. (2006) New layered uranium phosphate fluorides: syntheses, structures, characterizations, and ionexchange properties of A(UO2)F(HPO4)·xH2O (A = Cs+, Rb+ , K+; x = 0–1.. Inorganic Chemistry, 45, 1020710214.CrossRefGoogle Scholar
Ondruš, P., Veselovský, F. and Hloušek, J. (1997) A review of mineral associations and paragenetic groups of secondary minerals of the Jáchymov (Joachimsthal) ore district. Journal of the Czech Geological Society, 42, 109115.Google Scholar
Palatinus, L. and Chapuis, G. (2007) Superflip - a computer program for the solu¡tion of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, 40, 451456.CrossRefGoogle Scholar
Petříček, V., Dušek, M. and Palatinus, L. (2006) Jana2006. The crystallographic computing system. Institute of Physics, Prague.Google Scholar
Plášil, J., Sejkora, J., Čejka, J., Škácha, P., Goliáš, V., Pavlíček, R. and Hofman, P. (2008) Supergene mineralization from the dump of the uranium shaft no. 16 Háje (Příbram). Bulletin Mineralogickopetrologicke ´ho oddeˇlení Národního Muzea (Praha), 16, 4355. [in Czech].Google Scholar
Plášil, J., Dušek, M., Novák, M., Čejka, J., Císařová, I. and Škoda, R. (2011a) Sejkoraite-(Y), a new member of the zippeite group containing trivalent cations from Jáchymov (St. Joachimsthal), Czech Republic: description and crystal structure refinement. American Mineralogist, 96, 983991.CrossRefGoogle Scholar
Plášil, J., Mills, S.J., Fejfarová, K., Dušek, M., Novák, M., Škoda, R., Čejka, J. and Sejkora, J. (2011b) The c r y s t a l s t r u c t u r e o f nat u r a l zi p p e i t e , K1.85H+ 0.15[(UO2)4O2(SO4)2(OH)2](H2O)4, from Já chymov, Czech Republic. The Canadian Mineralogist, 49, 10891103.Google Scholar
Plášil, J., Hloušek, J., Veselovský , F., Fejfarová, K., Dušek, M., Škoda, R., Novák, M., Čejka, J., Sejkora, J. and Ondruš , P. (2012a) Adolfpateraite, K(UO2)(SO4)(OH)(H2O), a new uranyl sulfate mineral from Jáchymov, Czech Republic. American Mineralogist, 97, 447454.CrossRefGoogle Scholar
Plášil, J., Fejfarová, K., Wallwork, K.S., Dušek, M., Škoda, R., Sejkora, J., Čejka, J., Veselovský , F., Hloušek, J., Meisser, N. and Brugger, J. (2012b) Crystal structure of pseudojohannite, with a revised formula, Cu3(OH)2[(UO2)4O4(SO4)2](H2O)12. American Mineralogist, 97, 17961803.CrossRefGoogle Scholar
Plášil, J., Fejfarová, K., Škoda, R., Dušek, M., Marty, J. and Čejka, J. (2012c) The crystal structure of magnesiozippeite, Mg[(UO2)2O2(SO4)](H2O)3.5, from East Saddle Mine, San Juan County, Utah (U.S.A.). Mineralogy and Petrology, http:// dx.doi.org/10.1007/s00710-012.0241–7.CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F. (1985) ‘‘PAP’’ (jrZ) procedure for improved quantitative microanalysis. Pp. 104106.in: Microbeam Analysis (J.T. Armstrong, editor). San Francisco Press, San Francisco, California, USA.Google Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172, 567570.CrossRefGoogle ScholarPubMed
Schindler, M. and Hawthorne, F.C. (2008) The stereochemistry and chemical composition of interstitial complexes in uranyl-oxysalt minerals. The Canadian Mineralogist, 46, 467501.CrossRefGoogle Scholar
Serezhkin, V.N., Boiko, N.V. and Trunov, V.K. (1982) Crystal structure of Sr[UO2(OH)CrO4]2·8H2O. Journal of Structure Chemistry, 23, 270273.CrossRefGoogle Scholar
Sokol, F. and Čejka, J. (1992) A thermal and mass spectrometric study of synthetic johannite [Cu(UO2)2(SO4)2(OH)2]·8H2O. Thermochimica Acta, 206, 235242.CrossRefGoogle Scholar
Spek, A.L. (1988) LePage - an MS DOS program for the determination of the metrical symmetry of a t ransla tion lat t ice. Journal of Applied Crystallography, 21, 578579.CrossRefGoogle Scholar
Spek, A.L. (2003) Single-crystal structure validation with the program PLATON. Journal of Applied Crystallography, 36, 713.CrossRefGoogle Scholar
Spek, A.L. (2009) Structure validation in chemical crystallography. Acta Crystallographica, D65, 148155.Google Scholar
Tali, R., Tabachenko, V.V., Kovba, L.M. and Dem’yanets, L.N. (1994) Structure of some uranyl hydroxomolybdates. Zhurnal Neorganicheskoi Khimii, 39, 17521754. [in Russian].Google Scholar
Unruh, D.K., Baranay, M., Pressprich, L., Stoffer, M. and Burns, P.C. (2012) Synthesis and characterization of uranyl chromate sheet compounds containing edge-sharing dimers of uranyl pentagonal bipyramids. Journal of Solid State Chemistry, 186, 158164.CrossRefGoogle Scholar
Vochten, R., Blaton, N. and Peeters, O. (1997) Deliensite, Fe(UO2)2(SO4)2(OH)2·3H2O, a new ferrous uranyl sulfate hydroxy hydrate from Mas d’Alary, Lodéve, Hérault, France. The Canadian Mineralogist, 35, 10211025.Google Scholar
Supplementary material: File

Plášil et al. supplementary material

CIF

Download Plášil et al. supplementary material(File)
File 1.1 MB