Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-28T04:28:40.309Z Has data issue: false hasContentIssue false

The crucial role of lithospheric structure in the generation and release of carbonatites: geological evidence

Published online by Cambridge University Press:  05 July 2018

A. R. Woolley*
Affiliation:
Department of Mineralogy, Natural History Museum, Cromwell Road, London SW7 5BD, UK
D. K. Bailey
Affiliation:
Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol BS8 1RJ, UK

Abstract

A recent database and world distribution map of carbonatites supports previous observations of the spatial and temporal aspects of these rocks, and provides new observations that are important for understanding their petrogenesis. These data reveal that there is an overwhelming concentration of carbonatites in Precambrian cratonic areas, most of which are elevated topographically. Thus, although approximately two-thirds of carbonatites are Phanerozoic in age, at least 88% of all dated carbonatites are located in the cratons, demonstrating a remarkable tendency for a Precambrian host. This observation suggests a link with kimberlites as diamond-bearing kimberlites are confined to the Archaean areas of cratons. The age data show that in many carbonatite-bearing provinces there has been repetition of carbonatite emplacement, with up to five episodes separated by hundreds of millions of years. In at least three provinces such activity extends from the late Archaean to relatively recent times and, because of the drift of the plates, this would seem to preclude any direct role for mantle plumes in carbonatite genesis. Magmatism is activated when lithosphere lesions are reopened in response to major changes in global plate movement patterns.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, T. and Neumann, E.-R. (2001) Fluid inclusions in mantle xenoliths. Lithos, 55, 301320.CrossRefGoogle Scholar
Bailey, D.K. (1964) Crustal warping: a possible tectonic control of alkaline magmatism. Journal of Geophysical Research, 69, 11031111.CrossRefGoogle Scholar
Bailey, D.K. (1977) Lithosphere control of continental magmatism. Journal of the Geological Society, London, 133, 103106.CrossRefGoogle Scholar
Bailey, D.K. (1980) Volcanism, earth degassing and replenished lithosphere mantle. Philosophical Transactions of the Royal Society of London, 297A, 309322.Google Scholar
Bailey, D.K. (1983) The chemical and thermal evolution of rifts. Tectonophysics, 94, 585597.CrossRefGoogle Scholar
Bailey, D.K. (1987) Mantle metasomatism-perspective and prospect. Pp. 113. in: Alkaline igneous rocks (Fitton, J.G. and Upton, B.G.J., editors). Geological Society Special Publications, 30. The Geological Society, London.Google Scholar
Bailey, D.K. (1993a) Petrogenetic implications of the timing of alkaline, carbonatite and kimberlite igneous activity in Africa. South African Journal of Geology, 96, 6774.Google Scholar
Bailey, D.K. (1993b) Carbonate magmas. Journal of the Geological Society of London, 150, 637651.CrossRefGoogle Scholar
Bailey, D.K. and Kearns, S. (2011) Dolomitic volcanism in Zambia: Cr and K signatures and comparisons with other dolomitic melts from the mantle. Pp. 211222. in: Volcanism and evolution of the African Lithosphere (L. Beccaluva, G. Bianchini and Wilson, M., editors). The Geological Society of America Special Paper, 478. The Geological Society of America, Boulder, Colorado, USA.Google Scholar
Bailey, D.K. and Woolley, A.R. (1995) Magnetic quiet periods and stable continental magmatism: can there be a plume dimension? Pp. 1519. in: Plume2, Terra Nostra (Anderson, D.L., Hart, S.R. and Hofmann, A.W., convenors), 3/1995. Alfred-Wegener-Stiftung, Bonn, Germany.Google Scholar
Bailey, D.K. and Woolley, A.R. (1999) Episodic rift magmatism: the need for a new paradigm in global dynamics. Geolines (Praha), 6, 1520.Google Scholar
Bailey, D.K. and Woolley, A.R. (2005) Repeated, synchronous magmatism within Africa: timing, magnetic reversals, and global tectonics. Pp. 365378. in: Plates, plumes, and paradigms (G.R. Foulger, J.H. Natland, D.C. Presnall and Anderson, D.L., editors). Geological Society of America, Special Paper, 388. The Geological Society of America, Boulder, Colorado, USA.Google Scholar
Barker, D.S. (1989) Field relations of carbonatites. Pp. 3869. in: Carbonatites: Genesis and Evolution (Bell, K.. editor). Unwin Hyman, London.Google Scholar
Bell, K. (2001) Carbonatites: relationships to mantleplume activity. Pp 267290. in: Mantle plumes: their identification through time (Ernst, R.E. and Buchan, K.L., editors). Geological Society of America, Special Paper, 352. The Geological Society of America, Boulder, Colorado, USA.Google Scholar
Bell, K. (2005) Igneous rocks; carbonatites. Pp. 217233. in: Encyclopedia of Geology 3. Elsevier, Oxford, UK.Google Scholar
Bell, K. and Blenkinsop, J. (1987) Nd and Sr isotopic compositions of East African carbonatites: implications for mantle heterogeneity. Geology, 15, 99102.2.0.CO;2>CrossRefGoogle Scholar
Bell, K. and Simonetti, A. (1996) Carbonatite magmatism and plume activity: implications from the Nd, Pb and Sr isotope systematics of Oldoinyo Lengai. Journal of Petrology, 37, 13211339.CrossRefGoogle Scholar
Bell, K. and Simonetti, A. (2010) Source of parental melts to carbonatites-critical isotopic constraints. Mineralogy and Petrology, 98, 7789.CrossRefGoogle Scholar
Bell, K. and Tilton, G.R. (2001) Nd, Pb and Sr isotopic compositions of East African carbonatites: evidence for mantle mixing and plume inhomogeneity. Journal of Petrology, 42, 19271945.Google Scholar
Bell, K., Blenkinsop, J., Kwon, S.T., Tilton, G.R. and Sage, R.P. (1987) Age and radiogenic isotopic systematics of the Borden carbonatite complex, Ontario, Canada. Canadian Journal of Earth Sciences, 24, 2430.CrossRefGoogle Scholar
Bell, K., Castorina, F., Lavecchia, G., Rosatelli, G. and Stoppa, F. (2004) Is there a mantle plume below Italy? Eos, Transactions of the American Geophysical Union, 85(50), 541547.CrossRefGoogle Scholar
Bonadiman, C., Beccaluva, L., Coltorti, C. and Siena, F. (2005) Kimberlite-like metasomatism and ‘garnet signature’ in spinel-peridotite xenoliths from Sal, Cape Verde Archipelago: relics of a subcontinental mantle domain within the Atlantic oceanic lithosphere? Journal of Petrology, 46, 24652493.CrossRefGoogle Scholar
Boyd, F.R. (1989) Compositional distinction between oceanic and cratonic lithosphere. Earth and Planetary Science Letters, 96, 1526.CrossRefGoogle Scholar
Brøgger, W.C. (1921) Die Eruptivgesteine des Kristianiagebietes. IV. Das Fengebiet in Telemark, Norwegen. Videnskapsselskapets Skrifter, 1. Mat.-Naturv, Klasse, 1920, 9, 1408.Google Scholar
Cloos, H. (1939) Hebung-Spaltung-Vulkanismu s.Elemente Eimer Geometrischen Analyse Indischer Grossformen. Geologische Rundschau, 30, 405527.CrossRefGoogle Scholar
Coltorti, M., Bonadiman, C., O’Reilly, S.Y., Griffin, W.L. and Pearson, N.J. (2010) Buoyant ancient continental mantle embedded in oceanic lithosphere (Sal Island, Cape Verde Archipelago). Lithos, 120, 223233.CrossRefGoogle Scholar
Dalton, J.A. and Presnall, D.C. (1998) Carbonatite melts along the solidus of model lherzolite in the system CaO-MgO-Al2O3-SiO2-CiO2 from 3 to 7 GPa. Contributions to Mineralogy and Petrology, 131, 123135.CrossRefGoogle Scholar
Daly, R.A. (1925) Carbonate dykes of the Premier Diamond Mine, Transvaal. Journal of Geology, 33, 659684.CrossRefGoogle Scholar
Dawson, J.B. and Hawthorne, J.B. (1973) Magmatic sedimentation and carbonatitic differentiation in kimberlite sills at Benfontein, South Africa. Journal of the Geological Society, London, 129, 6185.CrossRefGoogle Scholar
Djuraev, A.D. and Divaev, F.K. (1999) Melanocratic carbonatites-new type of diamond-bearing rocks, Uzbekistan.Pp. 639642. in: Mineral deposits: processes to processing (Stanley, C.J. and 39 others, editors). Proceedings of the 5th biennial meeting of the Society for Geology Applied to Mineral Deposits (SGA) and the 10th Quadrennial Symposium of the International Association on the Genesis of Ore Deposits (IAGOD), 1. Balkema, A.A., Rotterdam, The Netherlands, 802 pp.Google Scholar
Frezzotti, M.-L. and Peccerillo, A. (2007) Diamondbearing COHS fluids in the mantle beneath Hawaii. Earth and Planetary Science Letters, 262, 273283.CrossRefGoogle Scholar
Gittins, J. (1989) The origin and evolution of carbonatite magmas. Pp. 580600. in: Carbonatites: Genesis and Evolution (Bell, K., editor). Unwin Hyman, London.Google Scholar
Harte, B. (2010) Diamond formation in the deep mantle: the record of mineral inclusions and their distribution in relation to mantle dehydration zones. Mineralogical Magazine, 74, 189215.CrossRefGoogle Scholar
Hoernle, K., Tilton, G., Le Bas, M.J., Duggen, S, and Garbe-Schöenberg, D. (2002) Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate. Contributions to Mineralogy and Petrology, 142, 520542.CrossRefGoogle Scholar
Holmes, A. (1944) Principles of Physical Geology. Thomas Nelson, London. Janse, A.J.A. (1994) Is Clifford’s rule still valid? Affirmative examples from around the world. Pp. 215235. in: Proceedings of the 5th International Kimberlite Conference, Araxa, Brazil, 1991. Volume 2. Diamonds: characterization, genesis and exploration (Meyer, H.O.A. and Leonardos, O.H., editors). Companhia de Pesquisa de Recurcos Minerais, Brasilia.Google Scholar
Kalt, A., Hegner, E. and Satir, M. (1997) Nd, Sr and Pb isotopic evidence for diverse lithospheric mantle sources of East African Rift carbonatites. Tectonophysics, 278, 3145.CrossRefGoogle Scholar
Kjarsgaard, B.A. and Hamilton, D.L. (1989) The genesis of carbonatites by immiscibility. Pp 388404. in: Carbonatites: Genesis and Evolution (Bell, K., editor). Unwin Hyman, London.Google Scholar
Kwon, S.-T., Tilton, G.R. and Grunenfelder, M.H. (1989) Lead isotope relationships in carbonatites and alkalic complexes: an overview.Pp. 360387. in: Carbonatites: Genesis and Evolution (Bell, K., editor). Unwin Hyman, London.Google Scholar
Le Bas, M.J. (1971) Per-alkaline volcanism, crustal swelling, and rifting. Nature, Physical Science, 230, 8587.Google Scholar
Marsh, J.S. (1973) Relationships between transform directions and alkaline igneous rock lineaments in Africa and South America. Earth and Planetary Science Letters, 18, 317323.CrossRefGoogle Scholar
McConnell, R.B. (1951) Rift and shield structure in East Africa. Proceedings of the 18th International Geological Congress, Great Britain, 14, 199207.Google Scholar
J.K., Meen, Ayers, J.C. and Fregeau, E.J. (1989) A model of mantle metasomatism by carbonate alkaline melts: trace-element and isotopic compositions of mantle source regions of carbonatite and other continental igneous rocks. Pp. 464499. in: Carbonatites: Genesis and Evolution (Bell, K., editor). Unwin Hyman, London.Google Scholar
Menzies, M.A., Rogers, N., Tindle, A. and Hawkesworth, C.J. (1987) Metasomatic and enrichment processes in lithospheric peridotites, an effect of asthenosphere-lithosphere interaction. I. Pp. 313361. in: Mantle Metasomatism (Menzies, M.A. and Hawkesworth, C.J., editors). Academic Press, London.Google Scholar
Moine, B.N., Grégoire, M., O’Reilly, S.Y., Delpech, G., Sheppard, S.M.F., Lorand, J.P., Renac, C., Giret, A. and Cottin, J.Y. (2004) Carbonatite melt in oceanic upper mantle beneath the Kerguelen Archipelago. Lithos, 75, 239252.CrossRefGoogle Scholar
Nelson, D.R., Chivas, A.R., Chappell, B.W. and McCulloch, M.T. (1988) Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. Geochimica et Cosmochimica Acta, 52, 117.CrossRefGoogle Scholar
Prins, P. (1981) The geochemical evolution of the alkaline and carbonatite complexes of the Damaraland igneous province, South West Africa. Annale Universiteit van Stellenbosch, Serie A1, Geologie, 3, 145278.Google Scholar
Rudnick, R.L., McDonough, W.F. and Chappell, B.W. (1993) Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics. Earth and Planetary Science Letters, 114, 463475.CrossRefGoogle Scholar
Simonetti, A., Goldstein, S.L., Schmidberger, S.S. and Viladkar, S.G. (1998) Geochemical and Nd, Pb, and Sr isotope data from Deccan alkaline complexes-inferences for mantle sources and plume-lithosphere interaction. Journal of Petrology, 39, 18471864.CrossRefGoogle Scholar
Smith, W.C. (1956) A review of some problems of African carbonatites. Journal of the Geological Society of London, 112, 189220.CrossRefGoogle Scholar
Tilton, G.R., Bryce, J.G. and Mateen, A. (1998) Pb-Sr-Nd isotope data from 30 and 300 Ma collision zone carbonatites in northwest Pakistan. Journal of Petrology, 39, 18651874.CrossRefGoogle Scholar
Ting, W., Burke, E.A.J., Rankin, A.H. and Woolley, A.R. (1994) Characterisation and petrogenetic significance of CiO2, H2O and CH4 fluid inclusions in apatite from the Sukulu carbonatite, Uganda. European Journal of Mineralogy, 6, 787803.CrossRefGoogle Scholar
Van Achterbergh, E., Griffin, W.L. and Stiefenhofer, J. (2001) Metasomatism in mantle xenoliths from the Letlhakane kimberlites: estimation of element fluxes. Contributions to Mineralogy and Petrology, 141, 397414.CrossRefGoogle Scholar
Vezier, J., Bell, K. and Jansen, S.L. (1992) Temporal distribution of carbonatites. Geology, 20, 11471149.2.3.CO;2>CrossRefGoogle Scholar
von Eckermann, H. (1963) Contributions to the knowledge of the alkaline dikes of the Alnöregion. IX. Carbonatitic kimberlite from Sundsvall. Arkiv för Mineralogi och Geologi, 3, 397402.Google Scholar
Whittington, A.G., Hofmeister, A.M. and Nabelek, P.I. (2009) Temperature-dependent thermal diffusivity of the Earth’s crust and implications for magmatism. Nature, 458, 319321.CrossRefGoogle ScholarPubMed
Woolley, A.R. (1987) Lithosphere metasomatism and the petrogenesis of the Chilwa Province of alkaline igneous rocks and carbonatites, Malawi. Journal of African Earth Sciences, 6, 891898.CrossRefGoogle Scholar
Woolley, A.R. (1989) The spatial and temporal distribution of carbonatites. Pp. 1537. in: Carbonatites: Genesis and Evolution (Bell, K., editor). Unwin Hyman, London.Google Scholar
Woolley, A.R. and Church, A.A. (2005) Extrusive carbonatites: a brief review. Lithos, 85, 114.CrossRefGoogle Scholar
Woolley, A.R. and Kjarsgaard, B.A. (2008) Carbonatite occurrences of the world: map and database. Geological Survey of Canada, Open File, 5796, 1 CD-ROM plus 1 map, [can be downloaded free from http://geopub.nrcan.gc.ca/moreinfo_e.php?id=225115&_h=Woolley].CrossRefGoogle Scholar
Wyllie, P.J. (1989) Origin of carbonatites: evidence from phase equilibrium studies. Pp. 500545. in: Carbonatites: Genesis and Evolution (Bell, K., editor). Unwin Hyman, London.Google Scholar