Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T03:56:07.365Z Has data issue: false hasContentIssue false

The concept of ‘end of waste’ and recycling of hazardous materials: in depth characterization of the product of thermal transformation of cement-asbestos

Published online by Cambridge University Press:  05 July 2018

A. Croce
Affiliation:
Dipartimento di Scienze e Innovazione Tecnologica, Universitá del Piemonte Orientale “Amedeo Avogadro”, Viale Teresa Michel 11, I-15121 Alessandria, Italy
M. Allegrina
Affiliation:
Dipartimento di Scienze e Innovazione Tecnologica, Universitá del Piemonte Orientale “Amedeo Avogadro”, Viale Teresa Michel 11, I-15121 Alessandria, Italy
P. Trivero
Affiliation:
Dipartimento di Scienze e Innovazione Tecnologica, Universitá del Piemonte Orientale “Amedeo Avogadro”, Viale Teresa Michel 11, I-15121 Alessandria, Italy
C. Rinaudo
Affiliation:
Dipartimento di Scienze e Innovazione Tecnologica, Universitá del Piemonte Orientale “Amedeo Avogadro”, Viale Teresa Michel 11, I-15121 Alessandria, Italy
A. Viani
Affiliation:
Institute of Theoretical and Applied Mechanics ASCR, Prague, Czech Republic Centre of Excellence Telč, Batelovská 485-6, CZ- 58856 Telč, Czech Republic
S. Pollastri
Affiliation:
Dipartimento di Scienze Chimiche e Geologiche, Universitaá di Modena e Reggio Emilia, Via Sant’Eufemia 19, I-41121 Modena, Italy
A. F. Gualtieri*
Affiliation:
Dipartimento di Scienze Chimiche e Geologiche, Universitaá di Modena e Reggio Emilia, Via Sant’Eufemia 19, I-41121 Modena, Italy

Abstract

Selected samples of asbestos-containing material (ACM) with different Ca/Si ratios have been treated thermally at 1200°C for 15 min to obtain an ‘end of waste geo-inspired material’. Before and after treatment, micro-Raman spectroscopy allowed the investigation of both powdered and massive samples by directing the laser beam onto crystals with elongated morphology, thin fibres and the matrix. In the raw samples, chrysotile and/or crocidolite were detected. After the thermal treatment, no asbestos phases were identified in the Raman spectra collected on fibrous or fibre-like morphologies. The scanning electron microscopy/energy dispersive spectroscopy investigations confirmed the onset of a pseudomorphic process during annealing, leading to the complete transformation of asbestos minerals into non-hazardous magnesium or calcium magnesium silicates such as forsterite, monticellite, a˚kermanite and merwinite.

The identification of such mineral assemblages was inspired by the close inspection of a natural counterpart, the high-temperature contact metamorphic imprint due to the intrusion of a sill into carbonate rocks. The process turned out to occur largely at the solid state and involved substantial mobilization of Ca and Mg to form a spinel phase (namely MgFe2O4) which was recognized in the matrix and within, or close to elongated morphologies.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abruzzese, C., Marabini, A.M., Paglietti, F. and Plescia, P. (1998) CORDIAM process: A new treatment for asbestos wastes. Pp. 563577 in: EPD Congress, San Antonio, Texas, U. (B. Mishra, editor). TMS Springer, Boston, US.Google Scholar
Ball, M.C., and Taylor, H.F.W. (1963) The dehydration of chrysotile in air and under hydrothermal conditions. Mineralogical Magazine, 33, 467482.CrossRefGoogle Scholar
Belluso, E., Fornero, E., Cairo, S., Albertazzi, G. and Rinaudo, C. (2007) The application of micro-Raman spectroscopy to distinguish carlosturanite from serpentine-group minerals. The Canadian Mineralogist, 45, 14951500.CrossRefGoogle Scholar
Bernardo, E., Esposito, L., Rambaldi, E. and Tucci, A. (2011) Sintered glass ceramic articles from plasma vitrified asbestos containing waste. Advances in Applied Ceramics, 110, 346352.CrossRefGoogle Scholar
Boccaccini, D.N., Leonelli, C., Rivasi, M.R., Romagnoli, M., Veronesi, P., Pellacani, G.C., and Boccaccini, R. (2007) Recycling of microwave inertised asbestos containing waste in refractory materials. Journal of the European Ceramic Society, 27, 18551858.CrossRefGoogle Scholar
Borderes, A. (2000) Vitrification of the incineration residues. Revue Verre, 6, 12.Google Scholar
Brousse, C., Newton, R.C., and Kleppa, O.J., (1984) Enthalpy of formation of forsterite, enstatite, akermanite, monticellite and merwinite at 1073 K determined by alkali borate solution calorimetry. Geochimica et Cosmochimica Acta, 48, 10811088.CrossRefGoogle Scholar
Cattaneo, A., Gualtieri, A.F., and Artioli, G. (2003) Kinetic study of the dehydroxylation of chrysotile asbestos with temperature by in situ XRPD. Physics and Chemistry of Minerals, 30, 177183.CrossRefGoogle Scholar
Chopelas, A. (1991) Single crystal Raman spectra of forsterite, fayalite, and monticellite. American Mineralogist, 76, 11011109.Google Scholar
Deegan, D., Chapman, C., Ismail, S.A., Wise, M.L.H. and Ly, H. (2006) The thermal treatment of hazardous wastes materials using Plasma Arc technology. IMechE Conference. Delivering Waste Solutionsu`Balancing Targets, Incentives and Infrastructure, vol. 9, IMechE London.Google Scholar
Dellisanti, F., Rossi, P.L., and Valdre`, G. (2009) Remediation of asbestos containing materials by Joule heating vitrification performer in a pre-pilot apparatus, International Journal of Mineral Processing, 91, 6167.CrossRefGoogle Scholar
Giacobbe, C., Gualtieri, A.F., Quartieri, S., Rinaudo, C., Allegrina, M. and Andeozzi, G.B., (2010) Spectroscopic study of the product of thermal transformation of chrysotile-asbestos containing materials (ACM). European Journal of Mineralogy, 22(4), 533546.CrossRefGoogle Scholar
Gualtieri, A.F., (2013) Recycling asbestos-containing material (ACM) from construction and demolition waste (CDW). Pp. 500525 in: Handbook of recycled concrete and demolition waste, (F. Pacheco-Torgal, V.W.Y. Tam, J.A., Labrincha, Y. Ding and J. De Brito, editors) Woodhead Publishing series in Civil and Structural Engineering, Cambridge, UKGoogle Scholar
Gualtieri, A.F., and Boccaletti, M. (2011) Recycling of the product of thermal inertization of cement– asbestos for the production of concrete. Construction and Building Materials 25, 35613569.CrossRefGoogle Scholar
Gualtieri, A.F., and Tartaglia, A. (2000): Thermal decomposition of asbestos and recycling in traditional ceramics. Journal of the European Ceramic Society, 20, 9, 14091418.CrossRefGoogle Scholar
Gualtieri, A.F., Levy, D., Belluso, E. and Dapiaggi, M. (2004) Kinetics of the decomposition of crocidolite asbestos: a preliminary real-time x-ray powder diffraction study. Materials Science Forum, 443–444, 291294.CrossRefGoogle Scholar
Gualtieri, A.F., Cavenati, C., Zanatto, I., Meloni, M., Elmi, G. and Lassinantti, M. (2008a) The transformation sequence of cement-asbestos slates up to 1200°C and safe recycling of the reaction product in stoneware tile mixtures. Journal of Hazardous Materials, 152, 563570.CrossRefGoogle Scholar
Gualtieri, A.F., Lassinantti Gualtieri, M. and Tonelli, M. (2008b) In situ ESEM study of the thermal decomposition of chrysotile asbestos in view of safe recycling of the transformation product. Journal of Hazardous Materials, 156, 260266.CrossRefGoogle Scholar
Gualtieri, A.F., Giacobbe, C., Sardisco, L., Saraceno, M., Gualtieri, M.L., Lusvardi, G., Cavenati, C. and Zanatto, I. (2011) Recycling of the product of thermal inertization of cement–asbestos for various industrial applications. Waste Management, 31, 91100.CrossRefGoogle ScholarPubMed
Gualtieri, A.F., Veratti, L., Tucci, A. and Esposito, L. (2012) Recycling of the product of thermal inertization of cement-asbestos in geopolymers Construction and Building Materials, 31, 4751.CrossRefGoogle Scholar
Ibán˜ ez, J., Artús, L., Cuscó , R., López, A. . Menéndez, E. and Andrade, M.C., (2007) Hydration and carbonation of monoclinic C2S and C3S studied by Raman spectroscopy. Journal of Raman Spectroscopy, 38, 6167.CrossRefGoogle Scholar
Joachim, B., Gardés, E., Abart, R. and Heinrich, W. (2011) Experimental growth of a˚kermanite reaction rims between wollastonite and monticellite: evidence for volume diffusion control. Contribution to Mineralogy and Petrology, 161, 389399.CrossRefGoogle Scholar
Mackenzie, K. J. D. and Meinhold, R.H., (1994) Thermal reactions of chrysotile revisited: A 29Si and 25Mg MAS NMR study. American Mineralogist, 79, 4350.Google Scholar
Martin, C.J., (1977) The thermal decomposition of chrysotile. Mineralogical Magazine, 35, 189195.Google Scholar
Martinez-Ramirez, S., Frías, M. and Domingo, C. (2006) Micro-Raman spectroscopy in white Portland cement hydration: long-term study at room temperature. Journal of Raman Spectroscopy, 37, 555561.CrossRefGoogle Scholar
Nakagomi, F., da Silva, S.W., Garg, V.K., Oliveira, A.C., Morais, P.C., and Franco, A. Jr. (2009) Influence of the Mg-content on the cation distribution in cubic MgxFe3–xO4 nanoparticles. Journal of Solid State Chemistry, 182, 24232429.CrossRefGoogle Scholar
Owens, B.E., (2000) High-temperature contact metamorphism of calc-silicate xenoliths in the Kiglapait Intrusion, Labrador. American Mineralogist, 85, 15951605.CrossRefGoogle Scholar
Palandri, A., Gilot, P. and Prado, G. (1993) A kinetic study of the decarbonation of CaCO3 . Journal of Analytical and Applied Pyrolysis, 27, 119130.CrossRefGoogle Scholar
Peškova, S. ., Machovič, V. and Procházka, P. (2011) Raman spectroscopy structural study of fired concrete. Ceramics – Silikáty, 55(4), 410417.Google Scholar
Rinaudo, C., Belluso, E. and Gastaldi, D. (2004) Assessment of the use of Raman spectroscopy for the determination of amphibole asbestos. Mineralogical Magazine, 68, 455465.CrossRefGoogle Scholar
Rinaudo, C., Gastaldi, D. and Belluso, E. (2003) Characterization of chrysotile, antigorite and lizardite by FT-Raman Spectroscopy. The Canadian Mineralogist, 41, 883890.CrossRefGoogle Scholar
Rinaudo, C., Gastaldi, D., Belluso, E. and Capella, S. (2005) Application of Raman Spectroscopy on asbestos fibre identification. Neues Jahrbuch für Mineralogie, 182(1), 3136.CrossRefGoogle Scholar
Sharma, S.K., Yoder, H.S. Jr., and Matson, D.W (1988) Raman study of some melilites in crystalline and glassy states. Geochimica et Cosmochimica Acta, 52(8), 19611967.CrossRefGoogle Scholar
Sharp, Z.D., Essene, E.J., Anovitz, L.M., Metz, G.W., Westrum, E.F. Jr., Hemingway, B.S., and Valley, J.W., (1986) The heat capacity of a natural monticellite and phase equilibria in the system CaO–MgO–SiO2–CO2 . Geochimicaet Cosmochimica Acta, 50, 14751484.CrossRefGoogle Scholar
Shmulovich, K.I., (1969) Stability of merwinite in the system CaO–MgO–SiO2–CO2 . Doklady Akademii Nauk SSSR, 184, 11771179.Google Scholar
Trindade, M.J., Dias, M.I., Coroado, J. and Rocha, F. (2009) Mineralogical transformations of calcareous rich clays with firing: A comparative study between calcite and dolomite rich clays from Algarve, Portugal. Applied Clay Science, 42, 345355.CrossRefGoogle Scholar
Viani, A. and Gualtieri, A.F., (2013a) Recycling the product of thermal transformation of cementasbestos for the preparation of calcium sulfoaluminate clinker. Journal of Hazardous Materials, 260, 813818.CrossRefGoogle Scholar
Viani, A. and Gualtieri, A.F., (2014) Preparation of magnesium phosphate cement by recycling the product of thermal transformation of asbestos containing wastes. Cement and Concrete Research, 58, 5666.CrossRefGoogle Scholar
Viani, A., Gualtieri, A.F., Secco, M., Peruzzo, L., Artioli, G. and Cruciani, G. (2013a) Crystal chemistry of cement-asbestos. American Mineralogist, 98, 10951105.CrossRefGoogle Scholar
Viani, A., Gualtieri, A.F., Pollastri, S., Rinaudo, C., Croce, A. and Urso, G. (2013b) Crystal chemistry of the high temperature product of transformation of cement-asbestos. Journal of Hazardous Materials, 248/249, 6980.CrossRefGoogle Scholar
Viti, C., Giacobbe, C. and Gualtieri, A.F., (2011) Quantitative determination of chrysotile in massive serpentinites using DTA: Implications for asbestos determinations. American Mineralogist, 96, 10031011.CrossRefGoogle Scholar