Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-26T16:06:48.055Z Has data issue: false hasContentIssue false

Combined neutron powder and X-ray single-crystal diffraction refinement of the atomic structure and hydrogen bonding of goslarite (ZnSO4·7H2O)

Published online by Cambridge University Press:  05 July 2018

J. L. Anderson*
Affiliation:
Department of Geological Sciences and Geological Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6
R. C. Peterson
Affiliation:
Department of Geological Sciences and Geological Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6
I. P. Swainson
Affiliation:
Neutron Program for Materials Research, National Research Laboratory, Chalk River, Ontario, Canada K0J 1J0

Abstract

The atomic structure of synthetic, deuterated goslarite (ZnSO4·7D2O), a = 11.8176(6) Å, b = 12.0755(7) Å, c = 6.8270(4)Å, space group P212121, Z = 4, has been refined in a combined neutron powder diffraction and X-ray single-crystal data refinement to wRp 1.92%, Rp 1.45% and R(F2) 12.66% for the neutron powder data contribution and R(F2) 8.72% for the X-ray single-crystal data contribution. Both data sets were necessary to achieve the best overall fit agreement in the Rietveld refinement and reasonable geometry within structural units. The results of this study confirm that the H-bonding scheme for goslarite is the same as that of the other epsomite group minerals. Small but significant variations of the Zn–O bond lengths can be attributed to details of the H bonds to the O atoms of the Zn octahedra. This investigation of the atomic structure and hydrogen bonding of goslarite is groundwork for future studies into phase relationships and the mechanisms of hydration and dehydration in the ZnSO4–H2O system.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alpers, C.N., Nordstrom, D.K. and Thompson, J.M. (1994) Seasonal variations of Zn/Cu ratios in acid mine water from Iron Mountain, California. Pp. 247270 in: Environmental Geochemistry ofSulfide Mine-Wastes (Jambor, J.L. and Blowes, D.W., editors). Short Course Handbook 22, Mineralogical Association of Canada, Ottawa, Ontario.Google Scholar
Anderson, J.L., Peterson, R.C. and Swainson, I.P. (2002) A neutron diffraction study of the hydrogen bonding in Cu substituted melanterite. 18th general meeting of the IMA. Programme with abstracts, September 2002, Edinburgh.Google Scholar
Baur, W.H. (1962) Zur Kristallchemie der Salzhydrate. Die Kristallstukturen von MgSO4·4H2O (Leonhardtit) und FeSO4·4H2O (Rozenit). Acta Crystallographica, 15, 815826.CrossRefGoogle Scholar
Baur, W.H. (1964) On the crystal chemistry of salt hydrates. IV. The refinement of the crystal structure of MgSO4-7H2O (epsomite). Acta Crystallographica, 17, 13611369.CrossRefGoogle Scholar
Bear, I.J., Grey, I.E., Madsen, I.C., Newnham, I.E. and Rogers, L.J. (1986) Structures of the basic zinc sulfates 3Zn(OH)2-ZnSO2-mH2O, m=3 and 5. Acta Crystallographica, 42, 3239.CrossRefGoogle Scholar
Beevers, C.A. and Schwartz, CM. (1935) The crystal structure of nickel sulphate heptahydrate NiSO4-7H2O. Zeitschrift für Kristallographie, 91, 157169.Google Scholar
Black, W.H., Griffith, E.A.H. and Roberston, B.E. (1975) MS2O6-6H2O (M=Mg,Ni,Zn). Acta Crystallographica, 31, 615618.CrossRefGoogle Scholar
Bruker (1999) Crystal Structure Analysis Package, Version 5.10 (SMART NT (Version 5.053), SAINT-Plus (Version 6.01), SHELXTL (Version 5.1)); Bruker AXS Inc., Madison, Wisconsin.Google Scholar
Chou, I.M. and Seal, R.R. II (2001) Determination of goslarite-bianchite equilibria by the humidity buffer technique at 0.1. Eleventh Annual V.M. Goldschmidt Conference.Google Scholar
Chou, I.M., Seal, R.R. II and Hemmingway, B.S. (2002) Determination of melanterite-rozenite and chal-canthite-bonatite equilibria by humidity measurements at 0.1 MPa. American Mineralogist, 87, 108114.CrossRefGoogle Scholar
Dowty, E. (2003) ATOMS version 6.0. Shape Software, 521 hidden Valley Road, Kingsport, Tennessee 37663, USA. http://www.shapesoftware.com/Google Scholar
Ferraris, G. and Marchini-Angelo, M. (1972) Survey of the geometry and environment of water molecules in crystalline hydrates studied by neutron diffraction. Acta crystallographica, 28, 35723583.CrossRefGoogle Scholar
Gaines, R.V., Skinner, H.C.W., Foord, E.E., Mason, B. and Rosenzweig, A. (1997) Dana's New Mineralogy (eighth edition). John Wiley and Sons, New York.Google Scholar
Hawthorne, F.C., Groat, L.A., Raudsepp, M. and Ercit, T.S. (1987) Kieserite, Mg(SO4)(H2O), a titanite group mineral. Neues Jahrbuch für Mineralogie Abhandlungen, 157, 121132.Google Scholar
Hawthorne, F.C., Krivovichev, S.V. and Burns, P.C. (2000) The crystal chemistry of sulfate minerals. Pp. 1 — 112 in: Sulfate Minerals - Crystallography, Geochemistry and Environmental Significance (Alpers, C.N., Jambor, J.L. and Nordstrom, D.K., editors). Reviews in Mineralogy and Geochemistry, 40, Mineralogical Society of America, Washington, D.C.Google Scholar
Iitaka, V.Y., Oswald, H.R. and Locchi, S. (1962) Die kristallstruktur von zink-hydroxidsulfat I, Zn(OH)2-ZnSO4 . Acta Crystallographica, 15, 559564.CrossRefGoogle Scholar
Jambor, J.L. (1994) Mineralogy of sulfide-rich tailings and their oxidation products. Pp. 59102 in: Environmental Geochemistry of Sulfide Mine-Wastes (Jambor, J.L. and Blowes, D.W., editors). Short Course Handbook, 22, The Mineralogical Association of Canada, Ottawa, Ontario.Google Scholar
Jambor, J.L., Nordstrom, D.K. and Alpers, C.N. (2000) Metal-sulfate salts from sulfide mineral oxidation. Pp. 303350 in: Sulfate minerals -Crystallography, Geochemistry, and Environmental Significance (Alpers, C.N., Jambor, J.L. and Nordstrom, D.K., editors). Reviews in Mineralogy and Geochemistry, 40, The Mineralogical Society of America, and the Geochemical Society, Washington, D.C.Google Scholar
Kemnitz, E., Werner, C, Stiewe, A., Worzala, H. and Troyanov, S.I. (1996) Synthese und struktur von Zn(HSO4)2 (H2SO4)2 und Cd(HSO4)2 . Zeitschrift für Naturforschung, Teil B. Anorganisch Chemie, Organische Chemie, 51, 1418.Google Scholar
Lander, G. (editor) (1992) Neutron scattering lengths and cross sections. Neutron News, 3(3) 2937.Google Scholar
Larson, A.C. and von Dreele, R.B. (1994) General Structure Analysis System (GSAS), LANSCE, MS-H805, Los Alamos National Laboratory, Los Alamos, New Mexico.Google Scholar
Minguzzi, C. (1948) Contributi allo studio della geochimica del rame. L'isoterma a 30 deg. C del sistema CuSO4-MgSO4-H2O. Atti. Della Societa Toscana di Scienze Naturali Residente in Pisa Memorie, Serie A 55, 2648.Google Scholar
Nyberg, B. (1973) The crystal structure of ZnSO3-2.5H2O. Acta Chemica Scandinavica, 27, 15411551.CrossRefGoogle Scholar
Peterson, R.C. (2003a) The relationship between Cu content and distortion in the atomic structure of melanterite from the Richmond mine, Iron Mountain, California. The Canadian Mineralogist, 41, 937949.CrossRefGoogle Scholar
Peterson, R.C. (2003b) Dehydration of minerals in mine waste. The relationship among melanterite FeSO4·7H2O, siderotil FeSO4·5H2O, and rozenite FeSO4·4H2O. Geological Association of Canada — Mineralogical Association of Canada. Program with Abstracts, 28.Google Scholar
Peterson, R.C., Hammarstrom, J.M. and Seal, R.R. II (2005) Alpersite (Mg,Cu)SO4·7H2O a new mineral of the melanterite group. Approved by the International Mineralogical Association commission on New Minerals as a new mineral species (#2003-040). American Mineralogist (in press).Google Scholar
Quinones, H. and Baggio, S. (1972) The crystal structure of zinc sulphite dihydrate. Journal of Inorganic and Nuclear Chemistry 34, 21532159.CrossRefGoogle Scholar
Spiess, M. and Gruehn, R. (1979) Zur thermischen Dehydratisierung des ZnSO4·7H2O und zum Hochtemperaturverhaltem von wasserfreiem ZnSO4 . Zeitschrift für Anorganische und Allgemeine Chemie 456, 222240.CrossRefGoogle Scholar
Tiegen, L. and Lin, Y. (1995) Discovery and investigation of zinc-melanterite in nature. Kuang Wu Xue Bao (Acta Mineralogica Sinica) 15, 286290.Google Scholar
Troyanov, S.I. and Simonov, M.A. (1989) Crystal structure of Zn (H2SO4)2 . Soviet Physics, Crystallography, 34, 233234.Google Scholar
Vlasov, V.V. and Kuznetsov, A.V. (1962) Melanterite and the products of its alteration. Zapiski Vsesoiuznoe Mineralogicheskoe Obshchestvo, 91, 490492.Google Scholar
Walenta, K. (1978) Boyleite, a new sulfate mineral from Kropbach, southern Black Forest. Chemie de Erde, 37, 7379.Google Scholar
Wildner, M. and Giester, G. (1991) The crystal structures of kieserite-type compounds. I. Crystal structures of Me(II)SO4·H2O (Me = Mn,Fe,Co,Ni,Zn). Neues Jahrbuch für Mineralogie, Monatshefte, 7, 296306.Google Scholar