Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-07-02T03:16:45.979Z Has data issue: false hasContentIssue false

Chrysoberyl and associated beryllium minerals resulting from metamorphic overprinting of the Maršíkov–Schinderhübel III pegmatite, Czech Republic

Published online by Cambridge University Press:  30 March 2023

Olena Rybnikova*
Affiliation:
Department of Mineralogy, Petrology and Economic Geology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
Pavel Uher
Affiliation:
Department of Mineralogy, Petrology and Economic Geology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
Milan Novák
Affiliation:
Department of Geological Science, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic
Štěpán Chládek
Affiliation:
Department of Geological Engineering, Faculty of Mining and Geology, VŠB – Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic
Peter Bačík
Affiliation:
Department of Mineralogy, Petrology and Economic Geology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
Sergii Kurylo
Affiliation:
Earth Science Institute, Slovak Academy of Sciences, Ďumbierska 1, 974 11 Banská Bystrica, Slovakia
Tomáš Vaculovič
Affiliation:
Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
*
*Corresponding author: Olena Rybnikova; Email: rybnikovageochem95@gmail.com

Abstract

The Maršíkov–Schinderhübel III pegmatite in the Hrubý Jeseník Mountains, Silesian Domain, Czech Republic, is a classic example of chrysoberyl-bearing LCT granitic pegmatite of beryl–columbite subtype. This thin pegmatite dyke, (up to 1 m in thickness in biotite–amphibole gneiss is characterised by symmetrical internal zoning. Tabular and prismatic chrysoberyl crystals (≤3 cm) occur typically in the intermediate albite-rich unit and rarely in the quartz core. Chrysoberyl microtextures are quite complex; their crystals are irregularly patchy, concentric or fine oscillatory zoned with large variations in Fe content (1.1–5.3 wt.% Fe2O3; ≤0.09 apfu). Chrysoberyl compositions reveal dominant Fe3+ = Al3+ and minor Fe2+ + Ti4+ = 2(Al, Fe)3+ substitution mechanisms in the octahedral sites. Tin, Ga, and V (determined by LA-ICP-MS) are characteristic trace elements incorporated in the chrysoberyl structure, whereas anomalously high Ta and Nb concentrations (thousands ppm) in chrysoberyl are probably caused by nano- to micro-inclusions of Nb–Ta oxide minerals; especially columbite–tantalite. Textural relationships between associated minerals, distinct schistosity of the pegmatite parallel to the host gneiss foliation and fragmentation of the pegmatite body into blocks as a result of superimposed stress are clear evidence for deformation and metamorphic overprinting of the pegmatite. Primary magmatic beryl, albite and muscovite were transformed to chrysoberyl, fibrolitic sillimanite, secondary quartz and muscovite during a high-temperature (~600°C) and medium-pressure (~250–500 MPa) prograde metamorphic stage under amphibolite-facies conditions. A subsequent retrograde, low-temperature (~200–500°C) and pressure (≤250 MPa) metamorphic stage resulted in the local alteration of chrysoberyl to secondary Fe,Na-rich beryl, euclase, bertrandite and late muscovite.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Edward Sturgis Grew

References

Barton, M.D. (1986) Phase equilibria and thermodynamic properties of minerals in the BeO–Al2O3–SiO2–H2O (BASH) system, with petrologic applications. American Mineralogist, 71, 277300.Google Scholar
Barton, M.D. and Young, S. (2002) Non-pegmatitic deposits of beryllium: mineralogy, geology, phase equilibria and origin. Pp. 591691 in: Beryllium: Mineralogy, Petrology and Geochemistry (Grew, E.S., editor). Reviews in Mineralogy and Geochemistry, 50. Mineralogical Society of America, Washington DC.Google Scholar
Beurlen, H., Thomas, R., Melgarejo, J.C., Da Silva, J.M.R., Rhede, D., Soares, D.R. and Da Silva, M.R.R. (2013) Chrysoberyl-sillimanite association from the Roncadeira pegmatite, Borborema province, Brazil: Implications for gemstone exploration. Journal of Geosciences, 58, 7990.CrossRefGoogle Scholar
Cempírek, J. and Novák, M. (2006). Mineralogy of dumortierite-bearing abyssal pegmatites at Starkoč and Běstvina, Kutná Hora Crystalline Complex. Journal of Geosciences, 51, 259270.Google Scholar
Černý, P. (2002) Mineralogy of beryllium in granitic pegmatites. Pp. 405444 in: Beryllium: Mineralogy, Petrology and Geochemistry (Grew, E.S., editor). Reviews in Mineralogy and Geochemistry, 50. Mineralogical Society of America, Washington DC.Google Scholar
Černý, P. and Ercit, T.S. (2005) The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43, 20052026.Google Scholar
Černý, P., Novák, M. and Chapman, R. (1992) Effects of sillimanite-grade metamorphism and shearing on Nb-Ta oxide minerals in granitic pegmatites: Maršíkov, Northern Moravia, Czechoslovakia. The Canadian Mineralogist, 30, 699718.Google Scholar
Černý, P., Novák, M. and Chapman, R. (1995) The Al(Nb,Ta)Ti–2 substitution in titanite: the emergence of a new species? Mineralogy and Petrology, 52, 6173.Google Scholar
Cháb, J., Fediuková, E., Fišera, M., Novotný, P. and Opletal, M. (1990) Variscan orogeny in Silesicum. Sborník Geologických Věd, Ložisková Geologie, Mineralogie, 29, 939 [in Czech, English summary].Google Scholar
Cháb, J., Stráník, Z. and Eliáš, M. (2007) Geological map of Czech Republic 1 : 500 000 (uncovered). Czech Geological Survey, Prague.Google Scholar
Chládek, Š. and Zimák, J. (2016) Association of Nb-Ta-(Ti-REE) oxide minerals in the Maršíkov–Lysá Hora pegmatite in Hrubý Jeseník Mountains, Czech Republic. Bulletin Mineralogie Petrologie, 24, 2532 [in Czech, English abstract].Google Scholar
Chládek, Š., Uher, P. and Novák, M. (2020) Compositional and textural variations of columbite-group minerals from beryl-columbite pegmatites in the Mařsíkov District, Bohemian Massif, Czech Republic: Magmatic versus hydrothermal evolution. The Canadian Mineralogist, 58, 767783.Google Scholar
Chládek, Š., Uher, P., Novák, M., Bačík, P., and Opletal, T. (2021) Microlite-group minerals: tracers of complex post-magmatic evolution in beryl-columbite granitic pegmatites, Maršíkov District, Bohemian Massif, Czech Republic. Mineralogical Magazine, 85, 725743.Google Scholar
Colombo, F., Sfragulla, J., del Tánago J., González and Miner E., Pannunzio (2021) Chrysoberyl from the Tablata I pegmatite, Pocho pegmatitic Group, Altautina district (Córdoba province, Argentina). Revista de la Asociación Geológica Argentina, 78, 344354 [in Spanish, English abstract].Google Scholar
Dixon, A., Cempírek, J. and Groat, L.A. (2014) Mineralogy and geochemistry of pegmatites on Mount Begbie, British Columbia. The Canadian Mineralogist, 52, 129164.Google Scholar
Dolníček, Z., Nepejchal, M., Sejkora, J., Ulmanová, J. and Chládek, Š. (2020a) Bohseite from beryl-columbite pegmatite D6e in Maršíkov (Silesicum, Czech Republic). Bulletin Mineralogie Petrologie, 28, 219223 [in Czech, English summary].Google Scholar
Dolníček, Z., Nepejchal, M. and Novák, M. (2020b) Minerals of the bavenite-bohseite series from the Schinderhübel I pegmatite in Maršíkov (Silesicum, Czech Republic). Bulletin Mineralogie Petrologie, 28, 353358 [in Czech, English summary].CrossRefGoogle Scholar
Dostál, J. (1966) Mineralogical and petrographical conditions of the chrysoberyl-sillimanite pegmatite from Maršíkov. Acta Universitatis Carolinae, Geologica, 4, 271287 [in German].Google Scholar
Dostál, J. (1969) Some new data for chrysoberyl from Maršíkov, Northern Moravia. Acta Universitatis Carolinae – Geologica, 4, 261287.Google Scholar
Downes, P.J. and Bevan, A.W.R. (2002) Chrysoberyl, beryl and zincian spinel mineralization in granulite-facies Archaean rocks at Dowerin, Western Australia. Mineralogical Magazine, 66, 9851002.Google Scholar
Franz, G. and Morteani, G. (1981) The system BeO–Al2O3–SiO2–H2O: Hydrothermal investigation of the stability of beryl and euclase in the range from 1 to 6 kb and 400 to 800°C. Neues Jahrbuch für Mineralogie, Abhandlungen, 140, 273299.Google Scholar
Franz, G. and Morteani, G. (1984) The formation of chrysoberyl in metamorphosed pegmatites. Journal of Petrology, 25, 2752.Google Scholar
Franz, G. and Morteani, G. (2002) Be-minerals: synthesis, stability, and occurrence in metamorphic rocks. Pp. 551589 in: Beryllium: Mineralogy, Petrology and Geochemistry (Grew, E.S., editor). Reviews in Mineralogy and Geochemistry, 50. Mineralogical Society of America, Washington DC.Google Scholar
Galliski, M.Á., Márquez-Zavalía, M.F., Lira, R., Cempírek, J. and Škoda, R. (2012) Mineralogy and origin of the dumortierite-bearing pegmatites of Virorco, San Luis, Argentina. The Canadian Mineralogist, 50, 873894.Google Scholar
Grew, E.S. (1981) Surinamite, taaffeite, and beryllian sapphirine from pegmatites in granulite-facies rocks in Casey Bay, Enderby Land, Antarctica. American Mineralogist, 66, 10221033.Google Scholar
Grew, E.S. (2002) Beryllium in metamorphic environments (emphasis on aluminous compositions). Pp. 487549 in: Beryllium: Mineralogy, Petrology and Geochemistry (Grew, E.S., editor). Reviews in Mineralogy and Geochemistry, 50. Mineralogical Society of America, Washington DC.Google Scholar
Hawthorne, F.C. and Huminicki, D.M.C. (2002) The crystal chemistry of beryllium. Pp. 333403 in: Beryllium: Mineralogy, Petrology and Geochemistry (Grew, E.S., editor). Reviews in Mineralogy and Geochemistry, 50. Mineralogical Society of America, Washington DC.Google Scholar
Hazen, R.M. and Finger, L.W. (1987) High-temperature crystal chemistry of phenakite (Be2SiO4) and chrysoberyl (BeAl2O4). Physics and Chemistry of Minerals, 14, 426434.Google Scholar
Hegner, E. and Kröner, A. (2000) Review of Nd isotopic data and xenocrystic and detrital zircon ages from the pre-Variscan basement in the eastern Bohemian Massif: Speculations on palinspastic reconstructions. Geological Society Special Publication, 179, 113129.Google Scholar
Hong, T., Zhai, M.-G., Xu, X.-W., Li, H., Wu, C., Ma, Y.-C., Niu, L., Ke, Q. and Wang, C. (2021): Tourmaline and quartz in the igneous and metamorphic rocks of the Tashisayi granitic batholith, Altyn Tagh, nortwestern China: Geochemical variability constraints on metallogenesis. Lithos, 400–401, 106358.Google Scholar
Hruschka, W. (1824) Occurrence and crystallization of the Moravian fossils. 1. Chrysoberyl. Mittheilungen der k. k. Mährisch-Schlesischen Gesselschaft zur Beförderung des Ackerbaues, der Natur- und Landeskunde in Brünn, 52, 413415 [in German].Google Scholar
Janoušek, V., Aichler, J., Hanžl, P., Gerdes, A., Erban, V., Žáček, V., Pecina, V., Pudilová, M., Hrdličková, K., Mixa, P. and Žáčková, E. (2014) Constraining genesis and geotectonic setting of metavolcanic complexes: A multidisciplinary study of the Devonian Vrbno Group (Hrubý Jeseník Mts., Czech Republic). International Journal of Earth Sciences, 103, 455483.CrossRefGoogle Scholar
Jastrzębski, M., Żelaźniewcz, A., Sláma, J., Machowiak, K., Śliwiński, M., Jaźwa, A. and Kocjan, I. (2021) Provenance of Precambrian basement of the Brunovistulian Terrane: New data from its Silesian part (Czech Republic, Poland), central Europe, and implications for Gondwana break-up. Precambrian Research, 355, 106108.Google Scholar
Kanouo, N.S., Ekomane, E., Youngue, R.F., Njonfang, E., Zaw, K., Changqian, M., Ghogomu, T.R., Lentz, D.R. and Venkatesh, A.S. (2016) Trace elements in corundum, chrysoberyl, and zircon: Application to mineral exploration and province study of the western Mamfe gem clastic deposits (SW Cameroon, Central Africa). Journal of African Earth Sciences, 113, 3550.Google Scholar
Košuličová, M. and Štípská, P. (2007) Variations in the transient prograde geothermal gradient from chloritoid-staurolite equilibria: A case study from the Barrovian and Buchan-type domains in the Bohemian Massif. Journal of Metamorphic Geology, 25, 1936.Google Scholar
Kretschmer, F. (1911) Chrysoberyl from Marschendorf and its association. Tschermaks Mineralogische und Petrographische Mitteilungen, 30, 85103 [in German].Google Scholar
Kröner, A., Štípská, P., Schulmann, K. and Jaeckel, P. (2000) Chronological constraints on the pre-Variscan evolution of the northeastern margin of the Bohemian Massif, Czech Republic. Geological Society, London, Special Publication, 179, 175197.Google Scholar
Lafuente, B., Downs, R.T., Yang, H. and Stone, N. (2016) The power of databases: The RRUFF project. Highlights in Mineralogical Crystallography, 10, 129.Google Scholar
Laurent, A., Janoušek, V., Magna, T., Schulmann, K. and Míková, J. (2014) Petrogenesis and geochronology of a post-orogenic calc-alkaline magmatic association: The Žulová Pluton, Bohemian Massif. Journal of Geosciences, 59, 415440.Google Scholar
Lira, R. and Sfragulla, J. (2011) Granitic pegmatite chrysoberyl in a shear zone of the Achala Batholith, Córdoba, Argentina. Asociación Geológica Argentina, 14, 127130.Google Scholar
Lupulescu, M.V., Chiarenzelli, J.R. and Bailey, D.G. (2012) Mineralogy, classification, and tectonic setting of the granitic pegmatites of New York State, USA. The Canadian Mineralogist, 50, 17131728.Google Scholar
Marschall, D. and Walton, L. (2014) Chrysoberyl. Pp. 207–215 in: Geology of Gem Deposits. Second Edition (Groat, L.A., editor). Mineralogical Association of Canada, Short Course Series, 44. Mineralogical Association of Canada, Québec.Google Scholar
Martin-Izard, A., Paniagua, A. and Moreiras, D. (1995) Metasomatism at a granitic pegmatite – dunite contact in Galicia: the Franqueira occurrence of chrysoberyl (alexandrite), emerald, and phenakite. The Canadian Mineralogist, 33, 775792.Google Scholar
Merino, E., Villaseca, C., Orejana, D. and Jeffries, T. (2013) Gahnite, chrysoberyl and beryl co-occurrence as accessory minerals in a highly evolved peraluminous pluton: The Belvís de Monroy leucogranite (Cáceres, Spain). Lithos, 179, 137156.Google Scholar
Mikulski, S.Z., Williams, I.S. and Bagiński, B. (2013) Early Carboniferous (Viséan) emplacement of the collisional Kłodzko-Złoty Stok granitoids (Sudetes, SW Poland): Constraints from geochemical data and zircon U-Pb ages. International Journal of Earth Sciences, 102, 10071027.Google Scholar
Novák, M. (1988) Garnets from pegmatites of the Hrubý Jeseník (Northern Moravia). Acta Musei Moraviae Scientiae Naturales, 73, 328 [in Czech, English summary].Google Scholar
Novák, M. (2005) Granitic pegmatites of the Bohemian Massif (Czech Republic); mineralogical, geochemical and regional classification and geological significance. Acta Musei Moraviae Scientiae Geologicae, 90, 374. [in Czech, English summary].Google Scholar
Novák, M. and Rejl, L. (1993) Relationship between muscovite pegmatites and geophysical fields at the Hrubý Jeseník area. Acta Musei Moraviae Scientiae Naturales, 77, 4961 [in Czech, English summary].Google Scholar
Novák, M., Černý, P. and Uher, P. (2003) Extreme variation and apparent reversal of Nb-Ta fractionation in columbite-group minerals from the Scheibengraben beryl-columbite granitic pegmatite, Marsikov, Czech Republic. European Journal of Mineralogy, 15, 565574.Google Scholar
Novák, M., Dolníček, Z., Zachař, A., Gadas, P., Nepejchal, M., Sobek, K., Škoda, R. and Vrtiška, L. (2023) Mineral assemblages and compositional variations in bavenite–bohseite from granitic pegmatites of the Bohemian Massif, Czech Republic. Mineralogical Magazine, 87, https://doi.org/10.1180/mgm.2023.17Google Scholar
Pautov, L.A., Popov, M.P., Erokhin, Y. V, Khiller, V. V and Karpenko, V.Y. (2013) Mariinskite, BeCr2O4, a new mineral, chromium analog of chrysoberyl. Geology of Ore Deposits, 55, 648662.Google Scholar
René, M. (1983) Geochemistry and petrology of metapelites in the envelope of the core of the Desná Dome in northern Moravia. Časopis pro mineralogii a geologii, 28, 277286. [in Czech].Google Scholar
Schmetzer, K., Caucia, F., Gilg, H.A. and Coldham, T.S. (2016) Chrysoberyl recovered with sapphires in the New England placer deposits, New South Wales, Australia. Gems and Gemology, 52, 1836.Google Scholar
Schulmann, K. and Gayer, R. (2000) A model for a continental accretionary wedge developed by oblique collision: the NE Bohemian Massif. Journal of the Geological Society, London, 157, 401416.Google Scholar
Schulmann, K., Oliot, E., Košuličová, M., Montigny, R. and Štípská, P. (2014) Variscan thermal overprints exemplified by U–Th–Pb monazite and K–Ar muscovite and biotite dating at the eastern margin of the Bohemian Massif (East Sudetes, Czech Republic). Journal of Geosciences, 59, 389413.Google Scholar
Soman, K. and Nair, N.G.K. (1985) Genesis of chrysoberyl in the pegmatites of southern Kerala, India. Mineralogical Magazine, 49, 733738.Google Scholar
Souček, J. (1978) Metamorphic zones of the Vrbno and Rejvíz series, the Hrubý Jeseník Mountains, Czechoslovakia. Tschermaks Mineralogische und Petrographische Mitteilungen, 25, 195217.Google Scholar
Staněk, J. (1981) Pegmatites of Moravia. Pp. 132174. in: Mineralogie Československa (Bernard, J.H., editor). Academia, Praha [in Czech].Google Scholar
Sun, Z., Palke, A.C., Muyal, J., DeGhionno, D. and McClure, S.F. (2019) Geographic origin determination of alexandrite. Gems and Gemology, 55, 660681.Google Scholar
Vignola, P., Zucali, M., Rotiroti, N., Marotta, G., Risplendente, A., Pavese, A., Boscardin, M., Mattioli, V. and Bertoldi, G. (2018) The chrysoberyl-and phosphate-bearing albite pegmatite of Malga Garbella, Val di Rabbi, Trento Province, Italy. The Canadian Mineralogist, 56, 411424.Google Scholar
Warr, L.N. (2021) IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85, 291320.CrossRefGoogle Scholar
Žáček, V. and Vrána, S. (2002) Iron-rich chrysoberyl from Kalanga Hill, Muyombe District, north-eastern Zambia. Neues Jahrbuch für Mineralogie Monatshefte, 2002, 529540.Google Scholar
Supplementary material: File

Rybnikova et al. supplementary material

Rybnikova et al. supplementary material

Download Rybnikova et al. supplementary material(File)
File 25.2 KB