Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-30T03:01:44.939Z Has data issue: false hasContentIssue false

Chemographic exploration of the hyalotekite structure-type

Published online by Cambridge University Press:  28 February 2018

Frank C. Hawthorne*
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
Elena Sokolova
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
Atali A. Agakhanov
Affiliation:
Fersman Mineralogical Museum, Russian Academy of Science, Leninskii Pr-t, 18/2, Moscow, 117071, Russia
Leonid A. Pautov
Affiliation:
Fersman Mineralogical Museum, Russian Academy of Science, Leninskii Pr-t, 18/2, Moscow, 117071, Russia
Vladimir Yu. Karpenko
Affiliation:
Fersman Mineralogical Museum, Russian Academy of Science, Leninskii Pr-t, 18/2, Moscow, 117071, Russia
Edward S. Grew
Affiliation:
School of Earth and Climate Sciences, University of Maine, Orono, ME 04469, USA

Abstract

The hyalotekite group has been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (memorandum 57–SM/16). The general formula of the minerals of the hyalotekite group may be written as: A2B2M2[Si8T4O28]W where A = Ba2+, Pb2+ or K+; B = Ba2+, Pb2+ or K+; M = Ca2+, Y3+ or REE3+; T = Si4+, B3+ or Be2+; and W = F or □ (where REE = rare-earth elements and □ = vacancy).

Four minerals are currently known in this group: hyalotekite, Ba4Ca2[Si8B2(SiB)O28]F, triclinic, I$\bar 1$; khvorovite, Pb2+4Ca2[Si8B2(SiB)O28]F, triclinic I$\bar 1$; kapitsaite-(Y), Ba4(YCa)[Si8B2B2O28]F, triclinic, I$\bar 1$; and itsiite Ba4Ca2[Si8B4O28]□, tetragonal, I$\bar 4$2m.

We explore the possible end-member compositions within this group by conflating the properties of an end-member with the stoichiometry imposed by the bond topology of the hyalotekite structure-type and the crystal-chemical properties of its known constituents. There are two high-coordination sites in the hyalotekite structure, A and B, and occupancy of each of these sites can be determined only by crystal-structure refinement. If these two sites are considered together, there are 19 end-member compositions of the triclinic structure and six end-member compositions of the tetragonal structure involving A and B = Ba2+, Pb2+, K+; M = Ca2+, Y3+, REE3+; and T = Si4+, B3+, Be2+. There is the possibility for many other hyalotekite-group minerals, and two potential new minerals have been identified from data in the literature.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: G. Diego Gatta

References

Agakhanov, A.A., Pautov, L.A., Karpenko, V.Yu. and Siidra, O.I. (2015) A new data about minerals of the hyalotekite group from alkaline massif Darai-Pioz, Tadjikistan. Ontogeny, Phylogeny and System Of Mineralogy. The Proceedings of All-Russian Conference with International Participation. Miass, 2015. Miass: Institute of Mineralogy UB RAS, 5457 [in Russian].Google Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.Google Scholar
Christy, A.G., Grew, E.S., Mayo, S.C., Yates, M.G. and Belakovskiy, D.I. (1998) Hyalotekite, (Ba,Pb,K)4(Ca,Y)2Si8(B,Be)2(Si,B)2O28F, a tectosilicate related to scapolite: new structure refinement, phase transitions and a short-range ordered 3b superstructure. Mineralogical Magazine, 62, 7792.Google Scholar
Gagné, O. and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Gibbs, J.W. (1961) The Scientific papers of J. Willard Gibbs. Volume One. Thermodynamics. Dover Publications, New York.Google Scholar
Grew, E.S., Yates, M.G., Belakovskiy, D.I., Rouse, R.C. Su, S-C. and Marquez, N. (1994) Hyalotekite from reedmergnerite-bearing peralkaline pegmatite, Dara-i-Pioz, Tajikistan and from Mn skarn, Långban, Vårmland, Sweden: a new look at an old mineral. Mineralogical Magazine, 58, 285297.Google Scholar
Hawthorne, F.C. (2002) The use of end-member charge-arrangements in defining new mineral species and heterovalent substitutions in complex minerals. The Canadian Mineralogist, 40, 699710.Google Scholar
Hawthorne, F.C. and Huminicki, D.M.C. (2002) The crystal chemistry of beryllium. Pp. 333404 in: Beryllium: Mineralogy, Petrology and Geochemistry (Grew, E.S., editor). Reviews in Mineralogy and Geochemistry, 50. Mineralogical Society of America & the Geochemical Society, Washington DC.Google Scholar
Hawthorne, F.C., Ungaretti, L. and Oberti, R. (1995) Site populations in minerals: terminology and presentation of results of crystal-structure refinement. The Canadian Mineralogist, 33, 907911.Google Scholar
Hawthorne, F.C., Burns, P.C. and Grice, J.D. (1996) The crystal chemistry of boron. Pp. 41115 in: Boron: Mineralogy, Petrology, and Geochemistry (Anovitz, L.M. and Grew, E.S., editors). Reviews in Mineralogy, 33. Mineralogical Society of America, Washington DC.Google Scholar
Kampf, A.R., Peterson, R.C. and Joy, B.R. (2014) Itsiite, Ba2Ca(BSi2O7)2, a new mineral species from Yukon, Canada: description and crystal structure. The Canadian Mineralogist, 52, 401407.Google Scholar
Lindström, G. (1887) Om hyalotekit från Långban. Öfversigt af Kongliga Vetenkaps-Akademiens Förhandlingar, 9, 589593.Google Scholar
Moore, P.B., Araki, T. and Ghose, S. (1982) Hyalotekite, a complex lead borosilicate: its crystal structure and the lone-pair effect of Pb(II). American Mineralogist, 67, 10121020.Google Scholar
Nordenskiöld, A.E. (1877) Nya mineralier från Långban. Geologiska Föreningens Förhandlingar, 3, 376384.Google Scholar
Pasero, M. et al. (2017) The official IMA-CNMNC List of Mineral Names. http://nrmima.nrm.se/.Google Scholar
Pautov, L.A., Khvorov, P.V., Sokolova, E.V., Ferraris, G., Ivaldi, G. and Bazhenova, L.F. (2000) Kapitsaite-(Y), (Ba,K)4(Y,Ca)2Si8(B,Si)4O28F – a new mineral. Zapiski Vserossiiskogo Mineralogicheskogo Obchshestva, 129(6), 4249 [in Russian].Google Scholar
Pautov, L.A., Agakhanov, A.A., Sokolova, E., Hawthorne, F.C., Karpenko, V.Yu., Siidra, O.I., Garanin, V.K. and Abdu, Y.A. (2015) Khvorovite, ideally Pb2+4Ca2[Si8B2(SiB)O28]F, a new hyalotekite-group mineral from the Darai-Pioz alkaline massif, Tajikistan: Description and crystal structure. Mineralogical Magazine, 79, 949963.Google Scholar
Sokolova, E.V., Ferraris, G., Ivaldi, G., Pautov, L.A. and Khvorov, P.V. (2000) Crystal structure of kapitsaite-(Y), a new borosilicate isotypic with hyalotekite: Crystal chemistry of the related isomorphous series. Neues Jahrbuch für Mineralogie Monatshefte, 2000, 7484.Google Scholar
Spear, F.S. (1993) Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths. Mineralogical Society of America Monograph.Google Scholar