Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-19T10:09:10.688Z Has data issue: false hasContentIssue false

Bernardite, a new thallium arsenic sulphosalt from Allchar, Macedonia, with a determination of the crystal structure

Published online by Cambridge University Press:  05 July 2018

J. Pašava
Affiliation:
Ustredni ústav geologický, CS-118 21 Praha, Czechoslovakia
F. Pertlik
Affiliation:
Institut fuer Mineralogie und Kristallographie, Universitaet Wien, A-1010 Wien, Austria
E. F. Stumpfl
Affiliation:
Institut fuer Mineralogie und Petrologie, Montanuniversitaet, A-8700 Leoben, Austria
J. Zemann
Affiliation:
Institut fuer Mineralogie und Kristallographie, Universitaet Wien, A-1010 Wien, Austria

Abstract

The new mineral bernardite has been identified on one specimen from Allchar, Macedonia, Yugoslavia, together with orpiment and realgar. It forms black crystals, the size of which may exceed 1 mm. The streak is deep red; on an arbitrarily oriented section R(589nm) ranges from 23.8 to 24.7% in air, from 10.2 to 11.6% in oil. Microprobe analyses together with an X-ray structure analysis suggest the ideal formula TlAs5S8, with a possible replacement of As by Sb up to 15 wt. %. Monoclinic; a 15.647(4), b 8.038(3), c 10.750(3) Å, β 91.27(3)°; space group P21/c; Z = 4; R = 0.049, wR = 0.036 for 2410 reflections. The atomic arrangement consists of a 3-dimensional As5S8 framework with eight-coordinated T1 in its holes. The mineral is named for Doc. Dr Jan H. Bernard, Prague, Czechoslovakia.

Type
Non-silicate Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balić-Žunić, T. and Sćavničar, S. (1985) Mineralogija, Godišnjak JAM 1, 3547.Google Scholar
Balić-Žunić, T. and Sćavničar, S. (1988) Nucl. Instr. Meth. Phys. Research A271, 304-7.CrossRefGoogle Scholar
Balić-Žunić, T. and Sćavničar, S. and Engel, P. (1982) Z. Kristallogr. 160, 109-25.CrossRefGoogle Scholar
Brock, C. P. (1984) ACA Newsletter 15 [2], No. 5, 14.Google Scholar
Caye, R., Picot, P., Pierrot, R. and Permingeat, F. (1967) Bull. Soc. fr. Min#raL Cristallogr. 90, 185-91.Google Scholar
Cromer, D. T. and Waber, J. T. (1974) In International Tables for X-ray Crystallography IV (Ibers, J. A. and Hamilton, W. C., eds.) The Kynoch Press: Birmingham.Google Scholar
Edenharter, A. (1976) Schweiz. Mineral. Petrogr. Mitt. 56, 195-217.Google Scholar
El Goresy, A. and Pavićević, M. K. (1988) Naturwiss. 75, 37-9.CrossRefGoogle Scholar
Engel, P. (1980) Z. Kristallogr. 151, 203-16.Google Scholar
Engel, P., Nowacki, W., Balić-Ž;unić, T. and Šćavničar, S. (1982) Ibid. 161, 159-66.Google Scholar
Engel, P., Gostojić, M. and Nowacki, W. (1983) Ibid. 165, 209-15.Google Scholar
Fischer, R. X. and Tillmanns, E. (1988) Acta Crystallogr. C44, 775-6.Google Scholar
Fleet, M. E. (1973) Z. Kristallogr. 138, 147-60.CrossRefGoogle Scholar
Ivanov, T. (1965) Problems of Postmagmatic Ore Deposition, Vol. II, 186-91. Geol. Surv. Czechoslovakia.Google Scholar
Ivanov, T. (1986) Proc. Workshop Feasibility solar neutrino detection with 205 by geochem, and accel, mass. spectroscop, measurements. GSI-86-9 Report, 1-6.Google Scholar
Jankovič, S. (1960) Neues Jahrb. Mineral. Abh. 94, 506-38.Google Scholar
Jankovič, S. (1982) Yugoslavia. In Mineral Deposits of Europe, Vol. 2: Southeast Europe (Dunning, F. W., Mykura, W. and Slater, D., eds.), 143202 (especially p. 185).Google Scholar
Jankovič, S. (1988) Nucl. Instr. Meth. Phys. Res. A271, 286 CrossRefGoogle Scholar
Johan, Z., Pierrot, R., Schubnel, H.-J. and Permingeat, F. (1970) Bull. Soc. fr. Minéal. Cristallogr. 93, 545-9.Google Scholar
Johan, Z., Picot, P., Hak, J. and Kvaék, M. (1975) Tscherm. Mineral. Petrogr. Mitt. 22, 200-10.CrossRefGoogle Scholar
Klaes, R. (1984) Neues Jahrb. Mineral. Abh. 150, 59-61.Google Scholar
Klaes, R. (1987) Experimentelle Untersuchungen an komplexen Thalliumsulfiden, unter besonderer Beriicksichtigung yon Thallium-Silber-Sulfosalzen. Inaugural-Diss. Universität Heidelberg.Google Scholar
Laurent, Y., Picot, P., Pierrot, R., Permingeat, F. and Ivanov, T. (1969) Bull. Soc. fr. Minéal. Cristallogr. 92, 38-48.Google Scholar
Nowacki, W. (1969) Schweiz. Mineral. Petrogr. Mitt. 49, 109-56.Google Scholar
Nowacki, W., Edenharter, A., Engel, P., Gostojić, M. and Nagl, A. (1982) Ore Genesis. The State of the Art (Amstntz, G. C. et al., eds.) Springer: Berlin-Heidelberg-New York, 689704.CrossRefGoogle Scholar
Ohmasa, M. and Nowacki, W. (1971) Z. Kristallogr. 134, 360-80.Google Scholar
Pašava, J., Pertlik, F., Stumpfl, E. F., and Zemann, J. (1988) Fortschr. Mineralogie 66, Beih. 1,117.Google Scholar
Pavićević, M. K. (1988) Nucl. Instr. Meth. Phys. Res. A271, 287-96.CrossRefGoogle Scholar
Pavićević, M. K. and El Goresy, A. (1988) Ibid. A271, 297-300.Google Scholar
Pavlović, V. and Arsenijević, M. (1956) Bull. Inst. Géol. République Macedonienne 5, 297-301.Google Scholar
Sobott, R. J. G. (1984) Neues Jahrb. Mineral. Abh. 150, 54-9.Google Scholar
Sobott, R. J. G., Klaes, R. and Moh, G. H. (1987) Chem. Erde 47, 195218.Google Scholar
Takéuchi, Y. and Sadanaga, R. (1969) Z. Kristallogr. 130, 346-68.CrossRefGoogle Scholar
Takéuchi, Y., Ghose, S. and Nowacki, W. (1965) Ibid. 121, 321-48.Google Scholar
Vlasse, M. and Fournes, L. (1978) Compt. Rend. Acad. Sci. Paris, 287, Sér. C, 47-9.Google Scholar
Zachariasen, W. H. (1967) Acta Crystallogr, 23, 558-64.CrossRefGoogle Scholar