Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-29T13:21:36.626Z Has data issue: false hasContentIssue false

Autometasomatic alteration of gabbro, Kap Edvard Holm intrusive complex, East Greenland

Published online by Cambridge University Press:  05 July 2018

R. Elsdon*
Affiliation:
Department of Geology, University College, Dublin 4, Ireland

Abstract

A local area of the Kap Edvard Holm Upper Layered Series gabbro has been converted into a quartz-albite-epidote ilmenite rock by leaching of iron and with a net mass loss. Among the textural changes is the dissolution of the magnetite matrix of magnetite-ilmenite lamellar intergrowths. This is an extreme example of a series of low-temperature changes occurring throughout the intrusion due to the reaction of the gabbro with a volatile-rich phase which separated during the magmatic stage and remained trapped within the walls of the intrusion. The Fe-rich fluid formed by this autometasomatic process is similar to those responsible for the genesis of Cornwall-type magnetite deposits. The probable temperature range for the process is 400–550°C.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, D. (1962) Ph.D. thesis, Univ. Manchester.Google Scholar
Bird, D. K., and Helgeson, H. C. (1980) Am. J. Sci. 280, 907-41.CrossRefGoogle Scholar
Bird, D. K. (1981) Ibid. 281, 576-614.Google Scholar
Chou, I.-M., and Eugster, H. P. (1977) Ibid. 277, 1296-314.Google Scholar
Davidson, A., and Wyllie, P. J. (1968) Econ. Geol. 63, 950-60.CrossRefGoogle Scholar
Deer, W. A., Howie, R. A., and Zussman, J. (1962) Rockforming Minerals: Vol. I Ortho- and Ring Silicates, Longmans, London.Google Scholar
Dollase, W. A. (1973) Kristallographie, 138, 41-63.CrossRefGoogle Scholar
Elsdon, R. (1969a) Geol. Mag. 106, 45-56.CrossRefGoogle Scholar
Elsdon, R. (1969b) Ph.D. thesis, Univ. Cambridge.Google Scholar
Elsdon, R. (1972) Mineral. Mag. 38, 946-56.CrossRefGoogle Scholar
Harrigan, D. B., and MacLean, W. H. (1976) Can. J. Earth Sci. 13, 500-11.CrossRefGoogle Scholar
Lapham, D. M. (1968) In Ore Deposits of the United States: 1933-67. Am. Inst. Mining Metall. and Petroleum Engineers, New York.Google Scholar
Lapham, D. M. and Gray, C. (1972) Commonwealth of Pennsylvania, Dept. of Environmental Resources, Mineral Resources Rept. M56, 1-343.Google Scholar
Lindgren, W. (1933) Mineral Deposits, McGraw-Hill, New York.Google Scholar
Liou, J. G. (1973) J. Petrol. 14, 381-413.CrossRefGoogle Scholar
Lwin, M. (1960) M.Sc. Thesis, Univ. Manchester.Google Scholar
Martin, R. F., and Piwinskii, A. J. (1969) Econ. Geol. 64, 798-803.CrossRefGoogle Scholar
Norton, D., and Taylor, H. P. (1980) J. Petrol. 20, 421-86.CrossRefGoogle Scholar
Palache, C. (1936) Am. Mineral. 21, 652-5.Google Scholar
Qingtong, Y., Xuehan, W., Mujie, L., and Shinong, D. (1980) Acta Geol. Sinica, 3, 231-46.Google Scholar
Sheppard, S. M. F., Brown, P. E., and Chambers, A. D. (1977) Contrib. Mineral. Petrol. 63, 129-47.CrossRefGoogle Scholar
Strens, R. G. J. (1966) Mineral. Mag. 35, 928-44.Google Scholar
Sweeton, F. H., and Baes, C. H. (1970) J. Chem. Thermodynamics 2, 479-500.CrossRefGoogle Scholar
Taylor, H. P., and Forester, R. W. (1980) J. Petrol. 20, 355-419.CrossRefGoogle Scholar
Wager, L. R., and Brown, G. M. (1968) Layered lgneous Rocks, Oliver and Boyd, Edinburgh.Google Scholar
Wager, L. R. and Deer, W. A. (1939) Meddels. Gronland 105, no. 1, 1-352.Google Scholar
White, D. E., and Sigvaldson, G. E. (1961) US Geol. Surv. Prof. Paper 450-E, 80-4.Google Scholar