Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T04:51:14.935Z Has data issue: false hasContentIssue false

Alkali feldspars from part of the Galway granite, Ireland

Published online by Cambridge University Press:  05 July 2018

J. R. Wilson
Affiliation:
Geologisk Institut, Aarhus Universitet, Ole Worms Alle, 8000 Århus C, Denmark
J. S. Coats
Affiliation:
Institute of Geological Sciences, 64-78 Grays Inn Road, London W.C. I, Great Britain

Summary

The structural states of alkali feldspars from the eastern end of the Galway Granite show transitions from orthoclase to microcline as a result of late deformation. Analyses of twenty samples for SiO2, Al2O3, TiO2, Fe2O3, CaO, Na2O, K2O, S, Cu, Zn, Ga, Rb, Sr, Ba, and Pb agree with previously determined orders of entry of elements into the ‘alkali site’. A relationship between this order of entry and the melting points of feldspar end-members is discussed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Coats, (J.S.) and Wilson, (J.R.), 1971. Min. Mag. 38, 138-51.CrossRefGoogle Scholar
Cuturic, (N.), KArOl, (N.), and Karamata, (S.), 1968. In: Ahrens, L. H. (Editor), Origin and Distribution of the Elements, pp. 739-47. Pergamon Press (Oxford).CrossRefGoogle Scholar
Damon, (P.E.), 1968. Geochimica Acta, 32, 564-7.CrossRefGoogle Scholar
Dittler, (E.) and Lasch, (H.), 1930. Sitz. Akad. Wiss. Wien, Math. Nat. Kl. 201, (M.A. 5-102).Google Scholar
Donnay, (G.), Wyart, (J.), and Sabatier, (G.), 1960. Ann. Rept. Dir. Geophys. Lab., 173-4.Google Scholar
Eitel, (W.), 1965. Silicate Science, 3, Dry Silicate Systems. Academic Press (New York).Google Scholar
Goldsmith, (J.R.) and Laves, (F.), 1954. Geochimica Aeta, 5, 119.CrossRefGoogle Scholar
Hall, (A.), 1966. Min. Mag. 35, 693-703.Google Scholar
Hall, (A.), 1967. Geochimica Acta, 31, 835-47.CrossRefGoogle Scholar
Heier, (K.S.), 1962. Norsk Geol. Tidsskr. 42, 415-54.Google Scholar
Heier, (K.S.), and ADAMS (J. A. S.), 1963. Phys. Chem. Earth, 5, 253-381.CrossRefGoogle Scholar
Leake, (B.E.), Hendry, (G.L.), Kemp, (A.), Plant, (A.J.), Harvey, (P.K.), Wilson, (J.R.), Coats, (J.S.), Aucott, (J.W.), Li3Nel, (T.), and Howarth, (R.J.), 1969. Chem. Geol. 5, 7-86.CrossRefGoogle Scholar
Leggo, (P.J.), Compston, (W.), and Leake, (B.E.), 1966. Quart. Journ. Geol. Soc. 122, 91-118.CrossRefGoogle Scholar
Marvin, (R.F.) and Lecache, (M.), 1970. Bull. Soc. franç. Min. Crist. 93, 581-2.Google Scholar
Nockolds, (S.R.), 1966. Geochimica Acta, 30, 267-78.CrossRefGoogle Scholar
Patterson, (C.) and Tatsumoto, (M.), 1964. Geochimica Acta, 28, 1-22.CrossRefGoogle Scholar
Rhodes, (J.M.), 1969. Chem. Geol. 4, 373-92.10.1016/0009-2541(69)90004-7CrossRefGoogle Scholar
Roy, (N.N.), 1967. Min. Mag. 36, 43-9.Google Scholar
Slawson, (W.L.) and Nackowski, (M.P.), 1955. Econ. Geol. 54, 1543-55.CrossRefGoogle Scholar
Sorell, (C.A.), 1962. Amer. Min. 47, 291-309.Google Scholar
Taylor, (S.R.), 1965. Phys. Chem. Earth, 6, 133-214.CrossRefGoogle Scholar
Taylor, (S.R.), and Heier, (K.S.), 1960. Rept. 21st Session Internat. Geol. Congr. 14, 47-61.Google Scholar
Tuttle, (O.F.), 1952. Journ. Geol. 60, 107-24.CrossRefGoogle Scholar
Yoder, (H.S.), Stewart, (D.B.), and Smith, (J.R.), 1957. Ann. Rept. Dir. Geophys. Lab. 56, 206-14.Google Scholar