Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-18T01:06:41.260Z Has data issue: false hasContentIssue false

Zincorietveldite, Zn(UO2)(SO4)2(H2O)5, the zinc analogue of rietveldite from the Blue Lizard mine, San Juan County, Utah, USA

Published online by Cambridge University Press:  03 March 2023

Anthony R. Kampf*
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA, USA
Travis A. Olds
Affiliation:
Section of Minerals and Earth Sciences, Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh, PA, USA
Jakub Plášil
Affiliation:
Institute of Physics of the CAS, Na Slovance 1999/2, 18200 Prague 8, Czech Republic
Joe Marty
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA, USA
*
Corresponding author: Anthony R. Kampf; Email: akampf@nhm.org

Abstract

The new mineral zincorietveldite (IMA2022-070), Zn(UO2)(SO4)2(H2O)5, was found in the Blue Lizard mine, San Juan County, Utah, USA, where it occurs as yellow to orange–yellow blades in a secondary assemblage with bobcookite, coquimbite, halotrichite, libbyite, metavoltine, rhomboclase, römerite, tamarugite and voltaite. The streak is very pale yellow. Crystals are transparent with vitreous lustre. The tenacity is brittle, the Mohs hardness is ~2½ and the fracture is curved. Cleavage is excellent on {010}, good on {100} and fair on {001}. The mineral is easily soluble in H2O and has a calculated density of 3.376 g⋅cm–3. The mineral is optically biaxial (+) with α = 1.568(2), β = 1.577(2) and γ = 1.595(2); 2V = 70(1)°. Electron microprobe analyses provided (Zn0.720Mg0.109Fe0.091Mn0.046Co0.035)Σ1.00(UO2)(SO4)2(H2O)5. Zincorietveldite is orthorhombic, Pmn21, a = 12.8712(9), b = 8.3148(4), c = 11.2959(4) Å, V = 1208.90(11) Å3 and Z = 4. Zincorietveldite is the Zn analogue of rietveldite. The structural unit is a uranyl-sulfate chain that is also found in the structures of bobcookite, oldsite, oppenheimerite and svornostite.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Daniel Atencio

References

Bartlett, J.R. and Cooney, R.P. (1989) On the determination of uranium-oxygen bond lengths in dioxouranium(VI) compounds by Raman spectroscopy. Journal of Molecular Structure, 193, 295300.CrossRefGoogle Scholar
Chenoweth, W.L. (1993) The geology and production history of the uranium deposits in the White Canyon Mining District, San Juan County, Utah. Utah Geological Survey Miscellaneous Publication, 93–3.Google Scholar
Ferraris, G. and Ivaldi, G. (1988) Bond valence vs. bond length in O···O hydrogen bonds. Acta Crystallographica, B44, 341344.CrossRefGoogle Scholar
Gagné, O.C. and Hawthorne, F.C (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo.Google Scholar
Kampf, A.R., Plášil, J., Kasatkin, A.V. and Marty, J. (2015a) Bobcookite, NaAl(UO2)2(SO4)4 ⋅18H2O, and wetherillite, Na2Mg(UO2)2(SO4)4⋅18H2O, two new uranyl sulfate minerals from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine, 79, 695714.CrossRefGoogle Scholar
Kampf, A.R., Plášil, J., Kasatkin, A.V., Marty, J. and Čejka, J. (2015b) Fermiite, Na4(UO2)(SO4)3⋅3H2O, and oppenheimerite, Na2(UO2)(SO4)2⋅3H2O, two new uranyl sulfate minerals from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine, 79, 11231142.CrossRefGoogle Scholar
Kampf, A.R., Sejkora, J., Witzke, T., Plášil, J., Čejka, J., Nash, B.P. and Marty, J. (2017) Rietveldite, Fe(UO2)(SO4)2(H2O)5, a new uranyl sulfate mineral from Giveaway-Simplot mine (Utah, USA), Willi Agatz mine (Saxony, Germany) and Jáchymov (Czech Republic). Journal of Geosciences, 62, 107120.CrossRefGoogle Scholar
Kampf, A.R., Plášil, J., Olds, T.A., Ma, C. and Marty, J. (2023a) Shinarumpite, a new cobalt uranyl sulfate mineral from the Scenic mine, San Juan County, Utah, USA, structurally related to leydetite. Mineralogical Magazine, 87, https://doi.org/10.1180/mgm.2022.128.Google Scholar
Kampf, A.R., Olds, T.A., Plášil, J. and Marty, J. (2023b) Zincorietveldite, IMA 2022-070. CNMNC Newsletter 70, Mineralogical Magazine, 87, https://doi.org/10.1180/mgm.2022.135CrossRefGoogle Scholar
Kampf, A.R., Olds, T.A., Plášil, J., Nash, B. and Marty, J. (2023c) Libbyite, (NH4)2(Na2□)[(UO2)2(SO4)3(H2O)]2⋅7H2O, a new mineral with uranyl-sulfate sheets from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine, 87, https://doi.org/10.1180/mgm.2023.26Google Scholar
Kornyakov, I.V., Tyumentseva, O.S., Krivovichev, S.V., Tananaev, I.G. and Gurzhiy, V.V. (2021) Crystal chemistry of the M2+[(UO2)(T6+O4)2(H2O)](H2O)4 (M2+ = Mg, Mn, Fe, Co, Ni and Zn; T6+ = S, Se) compounds: the interplay between chemical composition, pH and structural architecture. CrystEngComm, 23, 11401148.CrossRefGoogle Scholar
Libowitzky, E. (1999) Correlation of O–H stretching frequencies and O–H···O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.CrossRefGoogle Scholar
Ling, J., Sigmon, G.E., Ward, M., Roback, N. and Burns, P.C. (2010) Syntheses, structures, and IR spectroscopic characterization of new uranyl sulfate/selenate 1D-chain, 2D-sheet and 3D framework. Zeitschrift für Kristallographie, 225, 230239.CrossRefGoogle Scholar
Mandarino, J.A. (1976) The Gladstone-Dale relationship – Part 1: derivation of new constants. The Canadian Mineralogist, 14, 498502.Google Scholar
Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting mineral species for further study. The Canadian Mineralogist, 45, 13071324.CrossRefGoogle Scholar
Plášil, J., Hloušek, J., Kasatkin, A.V., Novák, M., Čejka, J. and Lapčák, L. (2015) Svornostite, K2Mg[(UO2)(SO4)2]2⋅8H2O, a new uranyl sulfate mineral from Jáchymov, Czech Republic. Journal of Geosciences, 60, 113121.CrossRefGoogle Scholar
Plášil, J., Kampf, A.R., Ma, C. and Desor, J. (2023) Oldsite, K2Fe2+[(UO2)(SO4)2]2(H2O)8, a new uranyl sulfate mineral from Utah, USA: its description and implications for the formation and occurrences of uranyl sulfate minerals. Mineralogical Magazine, 87, 151159, https://doi.org/10.1180/mgm.2022.106CrossRefGoogle Scholar
Serezhkin, V.N. and Serezhkina, L.B. (1978) X-ray diffraction study of double uranyl sulphates M(UO2)(SO4)⋅5H2O. Russian Journal of Inorganic Chemistry, 23, 414416.Google Scholar
Sheldrick, G.M. (2015a) SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica, A71, 38.Google Scholar
Sheldrick, G.M. (2015b) Crystal Structure refinement with SHELX. Acta Crystallographica, C71, 38.Google Scholar
Soares Rocha, N. (1960) Synthesis and X-Ray Data of Magnesium Uranyl Sulphate: MgUO2(SO4)2⋅nH2O. Anais da Academia Brasileira de Ciências, 32, 341343.Google Scholar
Tabachenko, V.V., Serezhkin, V.I., Serezhkina, L.B. and Kovba, L.M. (1979) Crystal structure of manganese sulfatouranylate MnUO2(SO4)2(H2O)5. Soviet Journal of Coordination Chemistry, 5, 12191223.Google Scholar
Supplementary material: File

Kampf et al. supplementary material

Kampf et al. supplementary material

Download Kampf et al. supplementary material(File)
File 226 KB