Skip to main content Accessibility help
Hostname: page-component-564cf476b6-mgm4h Total loading time: 0.231 Render date: 2021-06-20T20:29:04.880Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

The system Ag–Pd–Te: phase relations and mineral assemblages

Published online by Cambridge University Press:  02 January 2018

Anna Vymazalová
Czech Geological Survey, Geologická 6, 152 00 Prague 5, Czech Republic
František Laufek
Czech Geological Survey, Geologická 6, 152 00 Prague 5, Czech Republic
Alexandr V. Kristavchuk
Institute of Experimental Mineralogy RAS, 142 432 Chernogolovka, Russia University of Dubna, Universitetskaja 19, 141 980 Dubna, Russia
Dmitriy A. Chareev
Institute of Experimental Mineralogy RAS, 142 432 Chernogolovka, Russia
Milan Drábek
Czech Geological Survey, Geologická 6, 152 00 Prague 5, Czech Republic


The phase equilibria in the system Ag–Pd–Te were studied by the technique of using an evacuated silica glass tube at 350° and 450°C. Five ternary phases were synthesized: sopcheite (Pd3Ag4Te4), lukkulaisvaaraite (Pd14Ag2Te9),telargpalite (Pd2–x Ag1+x Te) and the previously unknown phases Pd7.5–x Ag0.5+ x Te3 and Pd2+x Ag2–x Te.The synthetic telargpalite has a compositional range from 26 to 29 wt.% Ag, with the formula Pd2–xAg1+x Te, where x varies from 0.09 to 0.22. The phase Pd2+x Ag2–x Te has a compositional range from 34 to 35 wt.% Ag, where x varies from 0.18 to 0.24. The phase Pd7.5–x Ag0.5+x Te3 forms a solid solution from 4 to 11 wt.% Ag, where x varies from 0.02 to 0.83. Phases Pd20Te7and Pd13Te3 dissolve up to 3.5 and 2 wt.% Ag, respectively. Other binary palladium tellurides do not dissolve Ag. The phase Pd3Ag4Te4, an analogue of the mineral sopcheite, forms a stable association with hessite and kotulskite it also coexists with lukkulaisvaaraite. Sopcheite is stable up to 383°C. Natural occurrences of hessite, kotulskite and lukkulaisvaaraite together in equilibrium indicate formation above this temperature. Phase relations defined the mineral assemblages that can be expected to occur in nature.The phase Pd7.5–x Ag0.5+x Te3 potentially represents a new mineral; it will probably be found in association with lukkulaisvaaraite and telargpalite or telluropalladinite, among other platinum-group minerals. The phasePd2+x Ag2–x Te can be found in association with telargpalite. Mineral assemblages defined in this study can be expected in Cu-Ni-PGE mineral deposits, associated with mafic and ultramafic igneous rocks, particularly in mineralized zones with known silver-palladium tellurides.

Research Article
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below.


Barkov, A.Y., Martin, R.F., Tarkian, M., Poirier, G. and Thibault, Y (2001) Pd-Ag tellurides from a Cl-rich environment in the Lukkulaisvaara layered intrusion, northern Russian Karelia. The Canadian Mineralogist, 39, 639653.CrossRefGoogle Scholar
Begizov, V.D. and Batashev, Ye.V. (1978) Platinum group minerals of the Lukkulaisvaara pluton. Doklady Akademii Nauk SSSR, 243, 12651268 [in Russian].Google Scholar
Berry, L.G. and Thompson, R.M. (1962) X-ray powder data for ore minerals: The Peacock atlas. Geological Society of America, New York p. 85.Google Scholar
Bindi, L., Spry, P.G. and Cipriani, C. (2004) Empressite, AgTe, from the Empress-Josephine mine, Colorado U.S.A.: Composition, physical properties, and determination of the crystal structure. American Mineralogist, 89, 10431047.CrossRefGoogle Scholar
Cabri, L.J. (1965) Discussion of “Empressite and stuetzite redefined” by R.M. Honea. American Mineralogist, 50, 795801.Google Scholar
Cabri, L.J. and Chen, T.T. (1976) Stibiopalladinite from the type locality. American Mineralogist, 61, 12491254.Google Scholar
Cabri, L.J. and Laflamme, J.H.G. (1976) The mineralogy of the platinum-group elements from some copper-nickel deposits of the Sudbury area, Ontario. Economic Geology, 71, 11591195.CrossRefGoogle Scholar
Cabri, L.J., Rowland, J.F., Laflamme, J.H.G. and Stewart, J.M. (1979) Keithconnite, telluropalladinite and other Pd-Pt tellurides from the Stillwater Complex, Montana. The Canadian Mineralogist, 17, 589594.Google Scholar
Chashchin, YY and Petrov, S.V. (2013) Low-sulfide PGE ore in the Volchetundra gabbro-anorthosite pluton, Kola Peninsula, Russia. Geology of Ore Deposits, 55, 357382.CrossRefGoogle Scholar
Chattopadhyay, G., Bhatt, Y.J. and Khera, S.K. (1986) Phase diagram of the Pd-Te system. Journal of Less-Common Metals, 123, 251266.CrossRefGoogle Scholar
Dunning, G.R., Laflamme, J.H.G. and Criddle, A.J. (1984) Sopcheite - a 2nd Canadian occurrence from the Lac-des-Iles Complex, Ontario. The Canadian Mineralogist, 22, 233237.Google Scholar
Economou-Eliopoulos, M. and Eliopoulos, D.G. (2000) Palladium, platinum and gold concentration in porphyry copper systems of Greece and their genetic significance. Ore Geology Reviews, 16, 5970.CrossRefGoogle Scholar
El-Boragy, M., Bhan, S. and Schubert, K. (1970) Kristallstruktur von Pd5Sb2 und Ni5As2 und einigen varianten. Journal of Less Common Metals, 22, 445458 [in German].CrossRefGoogle Scholar
Evstigneeva, T.L. and Trubkin, N.V. (2006) Experimental study of phase relations in the system Pd-Te and question about the mineral telargpalite. Electronic Scientific Information Journal “Vestnik Otdelenia nauk o Zemle RAN” No 1(24)2006, ISSN 1819-6586 [in Russian].Google Scholar
Frueh, A.J., Jr. (1959) The structure of hessite, Ag2Te-III. Zeitschrift für Kristallographie, 112, 4452.CrossRefGoogle Scholar
Genkin, A.D., Zhuravlev, N.N. and Smirnova, E.M. (1963) Moncheite and kotulskite — new minerals — and the composition of michenerite. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 92, 3350 [in Russian].Google Scholar
Genkin, A.D., Distler, YY, Gladyshev, G.D., Filimonova, A.A., Evstigneeva, T.L., Kovalenker, V.A., Laputina, I.P., Smirnov, A.V. and Grokhovskaya, T.L. (1981) Sulphide copper-nickel ores of the NoriVsk deposits. Nauka, Moscow, pp. 110134 [in Russian].Google Scholar
Grammatikopoulos, T.A, Barr, S.M., Hiebert, R.S., Stanley, C.R. and Valeyev, O. (2007) Platinum-group minerals from the Mechanic Settlement Pluton, southern New Brunswick, Canada. The Canadian Mineralogist, 45, 775792.CrossRefGoogle Scholar
Groeneveld Meijer, W.O.J. (1955) Synthesis, structures, and properties of platinum metal tellurides. American Mineralogist, 40, 646657.Google Scholar
Grokhovskaya, T.L., Distler, YY, Klyunin, S.F., Zakharov, A.A. and Laputina, I.P. (1992) Low-sulfide platinum group mineralization of the Lukkulaisvaara pluton, northern Karelia. International Geology Review, 34, 503520.CrossRefGoogle Scholar
Grokhovskaya, T.L., Bakaev, G.F., Sholokhnev, YY, Lapina, M.I., Muravitskaya, G.N. and Voitekhovich, V.S. (2003) The PGE ore mineralization in the Monchegorsk igneous layered complex (Kola Peninsula, Russia). Geologiya Rudnykh Mestorozhdenii, 45, 329352.Google Scholar
Grokhovskaya, T.L., Lapina, M.I., Ganin, V.A. and Grinevich, N.G. (2005) PGE mineralization in the Burakovsk layered complex, southern Karelia, Russia. Geology of Ore Deposits, 47, 283308.Google Scholar
Grønvold, F. and Rost, E. (1956) On the suphides, selenides and tellurides of palladium. Acta Chemica Scandinavica, 10, 16201634.CrossRefGoogle Scholar
Honea, R.M. (1964) Empressite and stützite redefined. American Mineralogist, 49, 325338.Google Scholar
Ipser, H. and Schuster, W. (1986) Transition-metal- chalcogen systems. X: The Pd-Te phase diagram. Journal of Less-Common Metals, 125, 183195.CrossRefGoogle Scholar
Janetzky, M. and Harbrecht, B. (2006) Crystal growth, structure and properties of the palladium-rich telluride. Zeitschrift für Anorganische und Allgemeine Chemie, 632, 837844.CrossRefGoogle Scholar
Jian, W., Lehmann, B., Mao, J., Ye, H., Li, Z., Zhang, J., Zhang, H., Feng, J. and Ye, Y (2014) Telluride and Bi- sulfosalt mineralogy of the Yangzhaiyu gold deposit, Xiaoqinling, Central China. The Canadian Mineralogist, 52, 883898.CrossRefGoogle Scholar
Karakaya, I. and Thompson, W.T (1988) The Ag-Pd (silver-palladium) system. Bulletin of Alloy Phase Diagrams, 9, 237243.CrossRefGoogle Scholar
Kelm, M., Gortzen, A., Kleykamp, H. and Pentinghaus, H. (1990) On the constitution of the Pd-Te system up to 28 at.% Te. Journal of the Less Common Metals, 166, 125133.CrossRefGoogle Scholar
Kim, W.S. (1986) Two new synthetic phases, Pd17Te4 and Pd7Te3 and new phase relations of the Pd-Te system. Journal of the Geological Society of Korea, 22, 146160.Google Scholar
Kim, W.S., Chao, G.Y and Cabri, L.J. (1990) Phase relations in the Pd-Te system. Journal of the Less Common Metals, 162, 6174.CrossRefGoogle Scholar
Kingston, G.A. (1965) The occurrence of platinoid bismuthotellurides in the Merensky Reef at Rustenburg platinum mine in the western Bushveld. Mineralogical Magazine, 35, 815834.CrossRefGoogle Scholar
Kiukkula, K and Wagner, C. (1957) Measurements on galvanic cells involving solid electrolytes. Journal of Electrochemical Society, 104, 385386.Google Scholar
Kovalenker, V.A., Laputina, I.P., Vyal'sov, L.N., Genkin, A.D. and Esvtigneeva, T.L. (1972) Tellurium minerals in copper-nickel sulfide ores at Talnakh and Oktyabr' (Noril’sk district). International Geology Review, 15, 12841294.CrossRefGoogle Scholar
Kovalenker, V.A., Genkin, A.D., Esvtigneeva, T.L. and Laputina, I.P. (1974) Telargpalite — a new palladium, silver and tellurium mineral from copper — nickel ores of the Oktyabrsky deposit. Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva, 103, 595600 [in Russian].Google Scholar
Kracek, F.C., Ksanda, C.J. and Cabri, L.J. (1966) Phase relations in the silver-tellurium system. American Mineralogist, 51, 1428.Google Scholar
Kullerud, G. (1971) Experimental techniques in dry sulfide research. Pp. 288315 in: Research Techniques for High Pressure and High Temperature (G.C. Ulmer, editor). Spinger-Verlag, New York.Google Scholar
Laufek, F., Vymazalová, A., Drábek, M., Drahokoupil, J. and Dušek, M. (2013) Crystallographic study of the ternary system Pd-Ag-Te. Materials Structure, 20, 8889 [conference abstract].Google Scholar
Matkovic, P. and Schubert, K (1977) Kristallstruktur von Pd3Te2 . Journal of the Less Common Metals, 52, 217220 [in German].CrossRefGoogle Scholar
Matkovic, P. and Schubert, K (1978) Kristallstruktur von Pd9Te4 . Journal of the Less Common Metals, 58, 3946 [in German].CrossRefGoogle Scholar
Medvedeva, Z.S., Klochko, M.A., Kuznetsov, V.G. and Andreeva, S.N. (1961) Equilibrium diagram of the palladium-tellurium system. ZhurnalNeorganicheskoi Khimii, 6, 17371739 [in Russian].Google Scholar
Mulja, T. and Mitchell, R.H. (1990) Platinum-group minerals and tellurides from the Geordie Lake intrusion, Coldwell Complex, Northwestern Ontario. The Canadian Mineralogist, 28, 489501.Google Scholar
Okamoto, H. (1992) The Pd-Te system (Palladium -Tellurium). Journal of Phase Equilibria, 13, 7378.CrossRefGoogle Scholar
Orsoev, D.A., Rezhenova, S.A. and Bogdanova, A.N. (1982) Sopcheite, Ag4Pd3Te4, a new mineral from copper-nickel ores of the Monchegorsk pluton. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 111, 114117 [in Russian].Google Scholar
Pentek, A., Molnár, F., Watkinson, D.H. and Jones, P.C. (2008) Footwall-type Cu-Ni-PGE mineralization in the Broken Hammer area, Wisner township, North Range, Sudbury structure. Economic Geology, 103, 10051028.CrossRefGoogle Scholar
Range, K.J., Zabel, M., Rau, F., Krziwanek, F.V., Marx, R. and Panzer, B. (1982) A novel three-dimensional tellurium array: high-preassure synthesis and crystal structure of AgTe3 . Angewandte Chemie, 21, 706707.CrossRefGoogle Scholar
Rodríguez-Carvajal, J. (2006) FullProf .2kRietveldProfile Matching & Integrated Intensities Refinement of X-ray and/or Neutron Data (powder and/or single-crystal). Laboratoire Léon Brillouin, Centre d'Etudes de Saclay, Gif-sur-Yvette Cedex, France.Google Scholar
Ruer, R. (1906) On the alloys of palladium with silver. Zeitschrift für Anorganische und Allgemeine Chemie, 51, 315319.CrossRefGoogle Scholar
Schneider, J. and Schulz, H. (1993) X-ray powder diffraction of Ag2Te at temperatures up to 1123 K. Zeitschrift für Kristallographie, 203, 115.Google Scholar
Sluzhenikin, S.F and Mokhov, A.V. (2015) Gold and silver in PGE-Cu-Ni and PGE ores of the Norilsk deposits, Russia. Mineralium Deposita, 50, 465492.CrossRefGoogle Scholar
Tarkian, M. and Stribrny, B. (1999) Platinum-group elements in porphyry copper deposits: a reconnais-sance study. Mineralogy and Petrology, 6, 161183.CrossRefGoogle Scholar
Thomassen, L. (1929) Kristalstrukturen einigen Binarlegierungen der Platinmetallen. Zeitschrift für Physikalische Chemie, 2, 349379 [in German].Google Scholar
Tolstykh, N.D. and Krivenko, A.P. (1996) Composition of telargpalite. Doklady of the Russian Academy of Sciences. Earth Science Sections, 344, 114118 [in Russian].Google Scholar
Vymazalová, A. and Drábek, M. (2010) The system Pd-Sn-Te at 400°C and mineralogical implications. I. The binary phases. The Canadian Mineralogist, 48, 10411050.CrossRefGoogle Scholar
Vymazalová, A., Grokhovskaya, T.L., Laufek, F. and Rassulov, V.I. (2014) Lukkulaisvaaraite, Pd14Ag2Te9, a new mineral from Lukkulaisvaara intrusion, northern Russian Karelia, Russia. Mineralogical Magazine, 78, 17431754.CrossRefGoogle Scholar
Watkinson, D.H. and Jones, P.C. (1996) Platinum-group minerals in fluid inclusions from the Marathon deposit, Coldwell Complex, Canada. Mineralogy and Petrology, 57, 9196.CrossRefGoogle Scholar
Watkinson, D.H. and Melling, D.R. (1992) Hydrothermal origin of platinum-group mineralization in low-temperature copper sulfide-rich assemblages, Salt Chuck intrusion, Alaska. Economic Geology and the Bulletin of the Society of Economic Geologists, 87, 175184.CrossRefGoogle Scholar
Wopersnow, W. and Schubert, K. (1977) Kristallstrtuktur von Pd20Sb7 und Pd20Te7 . Journal of the Less-Common Metals, 51, 3544 [in German].CrossRefGoogle Scholar
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The system Ag–Pd–Te: phase relations and mineral assemblages
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The system Ag–Pd–Te: phase relations and mineral assemblages
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The system Ag–Pd–Te: phase relations and mineral assemblages
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *