Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-21T04:30:29.132Z Has data issue: false hasContentIssue false

Plumbogaidonnayite, PbZrSi3O9⋅2H2O, a new Pb-member of the gaidonnayite group from the Saima alkaline complex, Liaoning Province, China

Published online by Cambridge University Press:  18 January 2024

Bin Wu*
Affiliation:
State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, China
Xiangping Gu
Affiliation:
School of Geosciences and Info-physics, Central South University, Changsha, Hunan 410083, China
Xin Gui
Affiliation:
State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, China
Christophe Bonnetti
Affiliation:
State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, China Arethuse Geology EURL, 29 Allée de Saint Jean, Fuveau 13710, France
Can Rao
Affiliation:
School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
Rucheng Wang
Affiliation:
State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210033, China
Jianjun Wan
Affiliation:
State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, China
Wenlei Song
Affiliation:
State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, Shaanxi 710069, China
*
Corresponding author: Bin Wu; Email: wubin@ecut.edu.cn

Abstract

Plumbogaidonnayite, ideally PbZrSi3O9⋅2H2O, is a new gaidonnayite-group mineral discovered as a secondary product derived from the alteration of eudialyte from the Saima alkaline complex, China. It occurs as aggregates (up to 1 mm) composed of subhedral to anhedral or platy crystals (individually 5–50 μm), associated closely with microcline, natrolite, aegirine, gaidonnayite, georgechaoite, zircon, bobtraillite and britholite-(Ce) in eudialyte pseudomorphs. The crystals are transparent, colourless or light brown with a vitreous lustre. Plumbogaidonnayite is brittle with conchoidal fracture, and it has a Mohs hardness of ~5 and a calculated density of 3.264 g/cm3. It is optically biaxial (+) with α = 1.61(3), β = 1.63(3) and γ = 1.66(4). The calculated 2V is 80°, with the optical orientations X, Y and Z parallel to the crystallographic a, b and c axes, respectively. The empirical formula is (Pb0.70Ca0.17Ba0.01K0.11Na0.01Y0.01)Σ1.01(Zr1.00Hf0.01Ti0.01)Σ1.02Si3.01O9⋅2H2O calculated on the basis of nine oxygen atoms per formula unit and assuming the occurrence of two H2O groups. Plumbogaidonnayite is orthorhombic, P21nb, a = 11.7690(4) Å, b = 12.9867(3) Å, c = 6.66165(16) Å, V = 1018.17(5) Å3 and Z = 4. The nine strongest lines of its powder XRD pattern [d in Å (I, %) (hkl)] are: 6.489 (36) (020), 5.803 (100) (101), 4.661 (27) (021), 4.336 (29) (121), 3.640 (30) (221), 3.114 (79) (112), 2.947 (27) (400), 2.622 (27) (241) and 2.493 (27) (312). Plumbogaidonnayite has a similar spiral chain framework structure with gaidonnayite and georgechaoite, which is composed of SiO4 tetrahedra and ZrO6 octahedra, but with disordered extra-framework sites (cations and H2O groups) characterised by the substitution of 2Na+ (K+)→Pb2+ (Ca2+) + □ (vacancy). The discovery of plumbogaidonnayite adds a new perspective on the cation ordering and heterovalent substitution mechanism in gaidonnayite-group minerals.

Type
Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Anthony R Kampf

References

Aksenov, S.M., Portnov, A.M., Chukanov, N.V., Rastsvetaeva, R.K., Nelyubina, Y.N., Kononkova, N.N. and Akimenko, M.I. (2016) Ordering of calcium and vacancies in calcium catapleiite CaZr[Si3O9]⋅2H2O. Crystallography Reports, 61, 376382.CrossRefGoogle Scholar
Boggs, R.C. and Ghose, S. (1985) Georgechaoite NaKZrSi3O9⋅2H2O, a new mineral species from Wind Mountain, New Mexico. The Canadian Mineralogist, 23, 14.Google Scholar
Borst, A.M., Friis, H., Andersen, T., Nielsen, T.F.D., Waight, T.E. and Smit, M.A. (2016) Zirconosilicates in the kakortokites of the Ilímaussaq complex, South Greenland: Implications for fluid evolution and high-field-strength and rare-earth element mineralization in agpaitic systems. Mineralogical Magazine, 80, 530.CrossRefGoogle Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Carey, D.M. and Korenowski, G.M. (1998) Measurement of the Raman spectrum of liquid water. Journal of Chemical Physics, 108, 26692675.CrossRefGoogle Scholar
Celestian, A.J., Lively, J. and Xu, W.Q. (2019) In situ Cs and H exchange into gaidonnayite and proposed mechanisms of ion diffusion. Inorganic Chemistry, 58, 19111928.CrossRefGoogle Scholar
Chao, G.Y. (1985) The crystal structure of gaidonnayite Na2ZrSi3O9⋅2H2O. The Canadian Mineralogist, 23, 1115.Google Scholar
Chao, G.Y. and Watkinson, D.H. (1974) Gaidonnayite, Na2ZrSi3O9⋅2H2O, a new mineral from Mont St. Hilaire, Quebec. The Canadian Mineralogist, 12, 316319.Google Scholar
Chukanov, N.V., Vigasina, M.F., Rastsvetaeva, R.K., Aksenov, S.M., Mikhailova, J.A. and Pekov, I.V. (2022) The evidence of hydrated proton in eudialyte-group minerals based on Raman spectroscopy data. Journal of Raman Spectroscopy, 53, 11881203.CrossRefGoogle Scholar
Day, M.C. and Hawthorne, F.C. (2020) A structure hierarchy for silicate minerals: chain, ribbon, and tube silicates. Mineralogical Magazine, 84, 165244.CrossRefGoogle Scholar
Dutta, P.K. and Del Barco, B. (1985) Raman spectroscopic studies of zeolite framework. Hydrated zeolite and the influence of cations. The Journal of Physical Chemistry, 89, 18611865.Google Scholar
Flack, H.D. (1983) On enantiomorph-polarity estimation. Acta Crystallographica, A39, 876881.CrossRefGoogle Scholar
Ghose, S. and Thakur, P. (1985) The crystal structure of georgechaoite NaKZrSi3O9⋅2H2O. The Canadian Mineralogist, 23, 510.Google Scholar
Hatert, F. and Burke, E.A.J. (2008) The IMA-CNMNC dominant-constituent rule revisited and extended. The Canadian Mineralogist, 46, 717728.CrossRefGoogle Scholar
Holland, T.J.B. and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 6577.CrossRefGoogle Scholar
Ilyushin, G.D., Voronkov, A.A., Ilyukhin, V.V., Nevskii, N.N. and Belov, N.V. (1981) Crystal structure of natural monoclinic catapleiite, Na2ZrSi3O9⋅2H2O. Doklady Akademii Nauk SSSR, 260, 623627.Google Scholar
Ivanyuk, G.Y., Pakhomovsky, Y.A. and Yakovenchuk, V.N. (2015) Eudialyte-group minerals in rocks of Lovozero layered complex at Mt. Karnasurt and Mt. Kedykvyrpakhk. Geology of Ore Deposits, 57, 600613.CrossRefGoogle Scholar
Kovalskaya, T.N., Ermolaeva, V.N., Chukanov, N.V., Varlamov, D.A., Kovalskiy, G.A., Zakharchenko, E.S., Kalinin, G.M. and Chaichuk, K.D. (2023) Synthesis of Fe-deficient eudialyte analogues: Relationships between the composition of the reaction system and crystal-chemical features of the products. Mineralogical Magazine, 87, 233240.CrossRefGoogle Scholar
Kuznicki, S.M., Bell, V.A., Nair, S., Hillhouse, H.W., Jacubinas, R.M., Braunbarth, C.M., Toby, B.H. and Tsapatsis, M.A. (2001) Titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules. Nature, 412, 720724.CrossRefGoogle ScholarPubMed
Ma, D.Z. and Liu, Y. (2023) Nb mineralization in the nepheline syenite in the Saima area of the North China Craton, China. Ore Geology Reviews, 152, 105247.CrossRefGoogle Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship: part IV. The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Mandarino, J.A. and Sturman, B.D. (1978) The identity of α-catapleiite and gaidonnayite. The Canadian Mineralogist, 16, 195198.Google Scholar
Mikhailova, J.A., Pakhomovsky, Y.A., Kalashnikova, G.O. and Aksenov, S.M. (2022) Dissolution of the eudialyte-group minerals: experimental modeling of natural processes. Minerals, 12, 1460.CrossRefGoogle Scholar
Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.CrossRefGoogle Scholar
Mumpton, F. A. (1999) La roca magica: uses of natural zeolites in agriculture and industry. Proceedings of the National Academy of Science, 96, 34633470.CrossRefGoogle Scholar
Pekov, I.V. and Chukanov, N.V. (2005) Microporous framework silicate minerals with rare and transition elements: minerogenetic aspects. Pp. 145171 in: Micro- and Mesoporous Mineral Phases (Ferraris, Giovanni and Merlino, Stefano, editors). Reviews in Mineralogy & Geochemistry, 57. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Pekov, I.V., Britvin, S.N., Zubkova, N.V., Chukanov, N.V., Bryzgalov, I.A., Lykova, I.S., Belakovskiy, D.I. and Pushcharovsky, D.Y. (2013) Vigrishinite, Zn2 Ti4–xSi4O14(OH,H2O,□)8, a new mineral from the Lovozero alkaline complex, Kola Peninsula, Russia. Geology of Ore Deposits, 55, 575586.CrossRefGoogle Scholar
Pekov, I.V., Lykova, I.S., Chukanov, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Zolotarev, A.A. Jr. and Zubkova, N.V. (2014) Zvyaginite NaZnNb2Ti[Si2O7]2O(OH,F)3(H2O)4+x (x < 1), a new mineral of the epistolite group from the Lovozero alkaline pluton, Kola peninsula, Russia. Geology of Ore Deposits, 56, 644656.CrossRefGoogle Scholar
Pushcharovskii, D.Y., Pekov, I.V., Pasero, M., Gobechiya, E.R., Merlino, S. and Zubkova, N.V. (2002) Crystal structure of cation-deficient calciohilairite and possible mechanisms of decationization in mixed-framework minerals. Crystallography Reports, 47, 748752.CrossRefGoogle Scholar
Sheldrick, G.M. (2015a) SHELXT – Integrated space-group and crystal structure determination. Acta Crystallographica, A71, 38.Google Scholar
Sheldrick, G.M. (2015b) Crystal structure refinement with SHELX. Acta Crystallographica, C71, 38.Google Scholar
Shen, G.F., Xu, J.S., Yao, P. and Li, G.W. (2017) Fengchengite: a new species with the Na-poor but vacancy-dominant N(5) site in the eudialyte group. Acta Mineralogica Sinica, 37, 140151 [in Chinese with English abstract].Google Scholar
Sitarz, M., Handke, M. and Mozgawa, W. (2000) Identification of silicooxygen rings in SiO2 based on IR spectra. Spectrochimica Acta, A56, 18191823.CrossRefGoogle Scholar
Warr, L.N. (2021) IMA-CNMNC approved mineral symbols. Mineralogical Magazine, 85, 291320.CrossRefGoogle Scholar
Wu, F.Y., Yang, Y.H., Marks, M.A.W., Liu, Z.C., Zhou, Q., Ge, W.C., Yang, J.S., Zhao, Z.F., Mitchell, R.H. and Markl, G. (2010) In situ U–Pb, Sr, Nd and Hf isotopic analysis of eudialyte by LA-(MC)-ICP-MS. Chemical Geology, 273, 834.CrossRefGoogle Scholar
Wu, B., Wang, R.C., Yang, J.H., Wu, F.Y., Zhang, W.L., Gu, X.P. and Zhang, A.C. (2015) Wadeite (K2ZrSi3O9), an alkali-zirconosilicate from the Saima agpaitic rocks in northeastern China: its origin and response to multi-stage activities of alkaline fluids. Lithos, 224–225, 126142.CrossRefGoogle Scholar
Wu, B., Wang, R.C., Yang, J.H., Wu, F.Y., Zhang, W.L., Gu, X.P. and Zhang, A.C. (2016) Zr and REE mineralization in sodic lujavrite from the Saima alkaline complex, northeastern China: A mineralogical study and comparison with potassic rocks. Lithos, 262, 232246.CrossRefGoogle Scholar
Wu, B., Wang, R.C., Liu, X.D., Guo, G.L. and Song, Z.T. (2018) Chemical composition and alteration assemblages of eudialyte in the Saima alkaline complex, Liaoning Province, and its implication for alkaline magmatic–hydrothermal evolution. Acta Petrologica Sinica, 6, 17411757 [in Chinese with English abstract].Google Scholar
Wu, B., Gu, X.P., Rao, C., Wang, R.C., Xing, X.Q., Zhong, F.J., Wan, J.J. and Bonnetti, C. (2022) Fluorsigaiite, Ca2Sr3(PO4)3F, a new mineral of the apatite supergroup from the Saima alkaline complex, Liaoning Province, China. Mineralogical Magazine, 86, 940947.CrossRefGoogle Scholar
Wu, B., Gu, X.P., Rao, C., Wang, R.C., Xing, X.Q., Wan, J.J., Zhong, F.J. and Bonnetti, C. (2023a) Gysinite-(La), PbLa(CO3)2(OH)⋅H2O, a new rare earth mineral of the ancylite group from the Saima alkaline complex, Liaoning Province, China. Mineralogical Magazine, 87, 143150.CrossRefGoogle Scholar
Wu, B., Gu, X.P., Rao, C., Wang, R.C., Xing, X.Q., Wan, J.J. and Zhong, F.J. (2023b) Plumbogaidonnayite, IMA 2022-095. CNMNC Newsletter 71, European Journal of Mineralogy, 35, 7579.Google Scholar
Wu, B., Gu, X.P., Wang, R.C., Liu, X.C., Xing, X.Q., and Ren, Q. (2023c) Discovery and genesis of three critical metal-bearing minerals. Geological Review, 69, https://doi.org/10.16509/j.georeview.2023.s1.083 [in Chinese].Google Scholar
Yang, Z.M., Giester, G., Ding, K.S. and Tillmanns, E. (2012) Hezuolinite, (Sr,REE)4Zr(Ti,Fe3+,Fe2+)2Ti2O8(Si2O7)2, a new mineral species of the chevkinite group from Saima alkaline complex, Liaoning Province, NE China. European Journal of Mineralogy, 24, 189196.CrossRefGoogle Scholar
Zhu, Y.S., Yang, J.H., Sun, J.F., Zhang, J.H. and Wu, F.Y. (2016) Petrogenesis of coeval silica-saturated and silica-undersaturated alkaline rocks: Mineralogical and geochemical evidence from the Saima alkaline complex, NE China. Journal of Asian Earth Sciences, 117, 184207.CrossRefGoogle Scholar
Zhu, Y.S., Yang, J.H., Sun, J.F. and Wang, H. (2017) Zircon Hf-O isotope evidence for recycled oceanic and continental crust in the sources of alkaline rocks. Geology, 45, 407410.CrossRefGoogle Scholar
Supplementary material: File

Wu et al. supplementary material

Wu et al. supplementary material
Download Wu et al. supplementary material(File)
File 303.5 KB