Hostname: page-component-5d59c44645-dknvm Total loading time: 0 Render date: 2024-02-20T17:24:24.627Z Has data issue: false hasContentIssue false

Napoliite, Pb2OFCl, a new mineral from Vesuvius volcano, and its relationship with dimorphous rumseyite

Published online by Cambridge University Press:  14 June 2023

Anatoly V. Kasatkin*
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Oleg I. Siidra
Department of Crystallography, Institute of Earth Sciences, St. Petersburg State University, University emb. 7/9, 199034 St. Petersburg, Russia Kola Science Center, Russian Academy of Sciences, Apatity, Murmansk Region, 184200, Russia
Fabrizio Nestola
Dipartimento di Geoscienze, Università di Padova, Via Gradenigo 6, I-35131, Padova, Italy
Igor V. Pekov
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Atali A. Agakhanov
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Natalia N. Koshlyakova
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Nikita V. Chukanov
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, 142432 Chernogolovka, Moscow region, Russia
Evgeny V. Nazarchuk
Department of Crystallography, Institute of Earth Sciences, St. Petersburg State University, University emb. 7/9, 199034 St. Petersburg, Russia
Simone Molinari
Museo della Natura e dell'Uomo, Sezione di Mineralogia Alessandro Guastoni, Università degli Studi di Padova, Via Giotto 1, I-35121, Padova, Italy
Manuela Rossi
Dipartimento di Scienze della Terra dell'Ambiente e delle Risorse, Università degli Studi di Napoli Federico II, via Cintia 4, I-80126, Napoli, Italy
Corresponding author: Anatoly V. Kasatkin; Email:


Napoliite, ideally Pb2OFCl, is a new fluoroxychloride mineral found in a specimen from a fumarole formed subsequent to the 1944 eruption of Vesuvius volcano, Naples Province, Italy. It occurs as well-shaped lamellar crystals up to 0.25 × 0.25 × 0.01 mm typically forming clusters up to 0.4 × 0.4 mm on the surface of volcanic scoria in association with anglesite, artroeite, atacamite, calcioaravaipaite, cerussite, challacolloite, cotunnite, hephaistosite, manuelarossiite, matlockite and susannite. Napoliite is colourless with white streak and adamantine lustre. It is brittle and has a laminated fracture. Cleavage is perfect on {001}. Dcalc = 7.797 g cm–3. The calculated mean refractive index is 2.10. Chemical composition (wt.%, electron microprobe) is: PbO 91.71, F 3.89, Cl 7.34, –O=(F+Cl) –3.30, total 99.64. The empirical formula calculated on the basis of 3 anions is Pb1.999O0.997F0.996Cl1.007. Raman spectroscopy confirms the absence of OH groups and H2O molecules in the mineral. Napoliite is tetragonal, space group P42/mcm, a = 5.7418(11), c = 12.524(4) Å, V = 412.9(2) Å3 and Z = 4. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 3.860 (85) (111); 3.139 (20) (004); 2.914 (100) (113); 2.866 (63) (200); 2.118 (19) (204); 2.027 (19) (220); 1.665 (20) (313); and 1.642 (23) (117). The crystal structure was refined to R1 = 0.024 for 222 reflections with F > 4σ(F). It is based on lead oxide blocks derived from that of litharge PbO, which alternate with layers of chloride ions. Napoliite represents a new structure type with a unique order/disorder pattern of fluorine and oxygen atoms. The new mineral is dimorphous with rumseyite. It is named after the city of Naples (Napoli in Italian).

Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Associate Editor: Elena Zhitova


Alfano, G.B. and Parascandola, A. (2015) Il Vesuvio e le sue eruzioni. Dagli appunti lasciati dagli autori. A cura di Corrado Buondonno, Con il commento di Giuseppe Luongo. Doppiavoce, Napoli, Italy, 462 pp. [in Italian].Google Scholar
Aurivillius, B. (1977) A case of mimetic twinning the crystal structure of Pb2OFX (X = Cl, Br and I). Chemica Scripta, 11, 208210.Google Scholar
Balić-Žunić, T., Garavelli, A., Pinto, D. and Mitolo, D. (2018) Verneite, Na2Ca3Al2F14, a new aluminum fluoride mineral from Icelandic and Vesuvius fumaroles. Minerals, 8, 553.10.3390/min8120553CrossRefGoogle Scholar
Boher, P., Garnier, P., Gavarri, J.R. and Hewat, A.W. (1985) Monoxyde quadratique PbOα(I): Description de la transition structurale ferroélastique. Journal of Solid State Chemistry, 57, 343350.CrossRefGoogle Scholar
Bouchard, M. and Smith, D.C. (2003) Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology, especially on corroded metals and coloured glass. Spectrochimica Acta A, 59, 22472266.CrossRefGoogle ScholarPubMed
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 146, 104107 [in Russian].Google Scholar
Campostrini, I. and Gramaccioli, C. (2005) Artroeite del Monte Somma-Vesuvio: secondo ritrovamento mondiale. Rivista Mineralogica Italiana, 29, 5052 [in Italian].Google Scholar
Campostrini, I., Demartin, F. and Russo, M. (2019) Sbacchiite, Ca2AlF7, a new fumarolic mineral from the Vesuvius volcano, Napoli, Italy. European Journal of Mineralogy, 31, 153158.CrossRefGoogle Scholar
Campostrini, I., Castellano, C., Demartin, F., Rocchetti, I., Russo, M. and Vignola, P. (2022) Paradimorphite, β-As4S3, a vintage new mineral from Solfatara di Pozzuoli and Vesuvius, Napoli, Italy. Mineralogical Magazine, 86, 500506.CrossRefGoogle Scholar
Chukanov, N.V., Siidra, O.I., Polekhovsky, Yu.S., Pekov, I.V., Varlamov, D.A., Ermolaeva, V.N. and Virus, A.A. (2019) Erikjonssonite, (Pb32O21)[(V,Si,Mo,As)O4]4Cl9, a new mineral from the Kombat mine and structural classification of layered lead oxychlorides related to litharge. European Journal of Mineralogy, 31, 619628.CrossRefGoogle Scholar
Ciomartan, D.A., Clark, R.J.H., McDonald, L.J. and Oldyha, M. (1996) Studies on the thermal decomposition of basic lead(II) carbonate by Fourier-transform Raman spectroscopy, X-ray diffraction and thermal analysis. Journal of Chemical Society, Dalton Transactions, 18, 36393645.CrossRefGoogle Scholar
Criddle, A.J., Keller, P., Stanley, C.J. and Innes, J. (1990) Damaraite, a new lead oxychloride mineral from the Kombat mine, Namibia (South West Africa). Mineralogical Magazine, 54, 593598.CrossRefGoogle Scholar
Demartin, F., Campostrini, I., Castellano, C., Gramaccioli, C.M. and Russo, M. (2012) D'ansite-(Mn), Na21Mn2+(SO4)10Cl3 and d'ansite-(Fe), Na21Fe2+(SO4)10Cl3, two new minerals from volcanic fumaroles. Mineralogical Magazine, 76, 27732783.10.1180/minmag.2012.076.7.10CrossRefGoogle Scholar
Demartin, F., Campostrini, I., Castellano, C. and Russo, M. (2014) Parascandolaite, KMgF3, a new perovskite-type fluoride from Vesuvius. Physics and Chemistry of Minerals, 41, 403407.CrossRefGoogle Scholar
Gabrielson, O., Parwel, A. and Wickman, F.E. (1958) Blixite, a new lead-oxyhalide mineral from Långban. Arkiv för Mineralogi och Geologi, 2, 411415.Google Scholar
Holland, T.J.B. and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 6577.10.1180/minmag.1997.061.404.07CrossRefGoogle Scholar
Kampf, A.R. (1991) Grandreefite, Pb2F2SO4: crystal structure and relationship to the lanthanide oxide sulfates, Ln2O2SO4. American Mineralogist, 76, 278282.Google Scholar
Kasatkin, A.V., Siidra, O.I., Nestola, F., Pekov, I.V., Agakhanov, A.A., Nazarchuk, E.V., Koshlyakova, N.N., Chukanov, N.V. and Rossi, M. (2023) Napoliite, IMA 2022-073. CNMNC Newsletter 70, Mineralogical Magazine, 87, 160168.Google Scholar
Krishnamurthy, N. and Soots, V. (1970) Raman spectra of CdF2 and PbF2. Canadian Journal of Physics, 48, 11041107.10.1139/p70-143CrossRefGoogle Scholar
Krivovichev, S.V. and Burns, P.C. (2006) The crystal structure of Pb8O5(OH)2Cl4, a synthetic analogue of blixite? The Canadian Mineralogist, 44, 515522.CrossRefGoogle Scholar
Krivovichev, S.V., Mentré, O., Siidra, O.I., Colmont, M. and Filatov, S.K. (2013) Anion-centered tetrahedra in inorganic compounds. Chemical Reviews, 113, 64596535.CrossRefGoogle ScholarPubMed
Lima, A., De Vivo, B., Fedele, L., Sintoni, F. and Milia, A. (2007) Geochemical variations between the 79 A.D. and 1944 A.D. Somma-Vesuvius volcanic products: constraints on the evolution of hydrothermal system based on fluid and melt inclusions. Chemical Geology, 237, 401417.CrossRefGoogle Scholar
Madsen, L.D. and Weaver, L. (1998) Characterization of lead oxide thin films produced by chemical vapor deposition. Journal of American Ceramical Society, 81, 988996.CrossRefGoogle Scholar
Malcherek, T., Bindi, L., Dini, M., Ghiara, M.R., Molina Donoso, A., Nestola, F., Rossi, M. and Schlüter, J. (2014) Tondiite, Cu3Mg(OH)6Cl2, the Mg-analogue of herbertsmithite. Mineralogical Magazine, 78, 583590.CrossRefGoogle Scholar
Melluso, L., Scarpati, C., Zanetti, A., Sparice, D. and de' Gennaro, R. (2022) The petrogenesis of chemically zoned, phonolitic, Plinian and sub-Plinian eruptions of Somma-Vesuvius, Italy: Role of accessory phase removal, independently filled magma reservoirs with time, and transition from slightly to highly silica undersaturated magmatic series in an ultrapotassic stratovolcano. Lithos, 430–431, 106854.CrossRefGoogle Scholar
Merlet, C. (1994) An accurate computer correction program for quantitative electron probe microanalysis. Microchimica Acta, 114/115, 363376.CrossRefGoogle Scholar
Nestola, F., Kasatkin, A.V., Biagioni, C., Škoda, R., Santello, L. and Agakhanov, A.A. (2023) Manuelarossiite, IMA 2022–097, in: CNMNC Newsletter 71. European Journal of Mineralogy, 35, 7579.Google Scholar
Parascandola, A. (1951) I minerali del Vesuvio nella eruzione del marzo 1944 e quelli formati durante l'attuale periodo diriposo. Bollettino della Società Geologica Italiana, 70, 523526 [in Italian].Google Scholar
Parascandola, A. (1960) Notizie vesuviane. Il Vesuvio dal marzo 1948 al dicembre 1958. Bollettino della Società dei Naturalisti in Napoli, 68, 1184 [in Italian].Google Scholar
Parascandola, A. (1961) Notizie vesuviane. Il Vesuvio dal gennaio 1959 al dicembre 1960. Bollettino della Società dei Naturalisti in Napoli, 69, 263298 [in Italian].Google Scholar
Rossi, M., Nestola, F., Zorzi, F., Lanza, A., Peruzzo, L., Guastoni, A. and Kasatkin, A. (2014) Ghiaraite: A new mineral from Vesuvius volcano, Naples (Italy). American Mineralogist, 99, 519524.CrossRefGoogle Scholar
Russo, M. and Campostrini, I. (2011) Ammineite, matlockite and post 1944 eruption fumarolic minerals at Vesuvius. Plinius, 37, 312.Google Scholar
Russo, M., Campostrini, I. and Demartin, F. (2014) Fumarolic minerals after the 1944 Vesuvius eruption. Abstract in: The Future of the Italian Geosciences – The Italian Geosciences of the Future (Cesare, B., Erba, E., Carmina, B., Fascio, L., Petti, F.M. and Zuccari, A., editors). Abstract Book, 87° Congresso della Società Geologica Italiana e 90° Congresso della Società Italiana di Mineralogia e Petrologia, Milan, Italy, September 10–12, 2014. Rendiconti Online della Società Geologica Italiana, 31, Supplemento n. 1.Google Scholar
Santacroce, R., Cioni, R., Marianelli, P., Sbrana, A., Sulpizio, R., Zanchetta, G., Donahue, D.J. and Joron, J.L. (2008) Age and whole rock-glass composition of proximal pyroclastics from the major explosive eruptions of Somma-Vesuvius: a review as a tool for distal tephrostratigraphy. Journal of Volcanology and Geothermal Research, 177, 118.CrossRefGoogle Scholar
Sbrana, A., Cioni, R., Marianelli, P., Sulpizio, R., Andronico, D. and Pasquini, G. (2020) Volcanic evolution of the Somma-Vesuvius Complex (Italy). Journal of Maps, 16, 137141.CrossRefGoogle Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, A71, 38.Google ScholarPubMed
Siidra, O.I., Krivovichev, S.V. and Filatov, S.K. (2008) Minerals and synthetic Pb(II) compounds with oxocentered tetrahedra: review and classification. Zeitschrift für Kristallographie – Crystalline Materials, 223, 114126.10.1524/zkri.2008.0009CrossRefGoogle Scholar
Turner, R.W., Siidra, O.I., Krivovichev, S.V., Stanley, C.J. and Spratt, J. (2012) Rumseyite, [Pb2OF]Cl, the first naturally occurring fluoroxychloride mineral with the parent crystal structure for layered lead oxychlorides. Mineralogical Magazine, 76, 12471255.CrossRefGoogle Scholar
Turner, R.W., Siidra, O.I., Rumsey, M.S., Polekhovsky, Y.S., Kretser, Y.L., Krivovichev, S.V., Spratt, J. and Stanley, C.J. (2015) Yeomanite, Pb2O(OH)Cl, a new chain-structured Pb oxychloride from Merehead Quarry, Somerset, England. Mineralogical Magazine, 79, 12031211.CrossRefGoogle Scholar
Zakir'yanov, D.O., Chernyshev, V.A. and Zakir'yanova, I.D. (2016) Phonon spectrum of lead oxychloride Pb3O2Cl2: Ab initio calculation and experiment. Physics of the Solid State, 58, 325332.CrossRefGoogle Scholar
Zubkova, N.V., Chukanov, N.V., Pekov, I.V., Pushcharovsky, D.Yu., Katerinopoulos, A., Voudouris, P. and Magganas, A. (2019) New data on fiedlerite–1A from ancient slags of Lavrion, Greece: crystal structure and hydrogen bonding. Doklady Earth Sciences, 486, 517520.CrossRefGoogle Scholar
Supplementary material: PDF

Kasatkin et al. supplementary material

Kasatkin et al. supplementary material 1

Download Kasatkin et al. supplementary material(PDF)
Supplementary material: File

Kasatkin et al. supplementary material

Kasatkin et al. supplementary material 2

Download Kasatkin et al. supplementary material(File)
File 161 KB