Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-12T10:58:18.619Z Has data issue: false hasContentIssue false

Mineralogy of the planets: a voyage in space and time

Hallimond Lecture for Centenary of Mineralogical Society of Great Britain and Ireland, 1976

Published online by Cambridge University Press:  05 July 2018

Joseph V. Smith*
Affiliation:
Department of the Geophysical Sciences, University of Chicago, Chicago Illinois 60637, USA

Summary

Pertinent general properties of the planets are listed. The condensation of the solar nebula is set in the context of stellar evolution and meteorites with sections on astronomical observations, chemical composition of the solar nebula, physical properties of the solar nebula, and chemical and physical aspects of condensation, accretion, and planetary differentiation. A cool nebula is preferred to allow survival of pre-solar grains with isotopic anomalies. Equilibrium progressive condensation of the solar nebula is regarded as a useful theoretical boundary, but complex processes involving crystal-liquid differentiation in, and collisions between, planetesimals are used to interpret the properties of meteorites and terrestrial planets. Chemical differentiation in the nebula begins with condensation and aggregation of dust, which can yield oxidized and reduced products depending whether C/O is less or greater than unity. Simple models for direct accretion of condensed materials into planets are reviewed but not adopted. Physical interactions involving small bodies include collisional accretion of dust-covered bodies, and differentiation of silicate and metal from mechanical, magnetic, and electrostatic forces. Physical and chemical differentiation involving large bodies involves head-on and glancing collision of planetesimals, orbital deflection, and disintegration within the Roche limit, and collision with debris rings and moons. Planetary accretion: dynamics, time scale, and heat sources involves more rapid growth of a larger body than a smaller one with ultimate development of one planet in each feeding zone, which flares out and ultimately overlaps with adjacent zones. Mars is small, and a planet did not develop in the asteroid belt, because of perturbations from Jupiter. The giant planets deflected material into the inner solar system. Melting of early planetesimals is invoked to explain differentiated meteorites. Chemical differentiation inside planet esimals and planets describes the phase equilibria for metal, sulphide, and peridotite, either dry, wet, or containing CO2. A wet body could begin crystal-liquid differentiation near 1250 K with sinking of Fe,S-rich liquid and rising of basaltic melt. The peridotitic residuum might undergo a subsequent differentiation at higher temperature under volatile-free conditions. Mineralogical storage of H2O, CO2, S, Cl, F, and alkalies is discussed. Chemical differentiation in planetary atmospheres briefly mentions escape of light species.

For the Earth, the early history is constrained by Archaean rocks dating from −3.8 × 109 yr whose properties indicate a non-reducing atmosphere, and a mantle that yielded volcanic rocks mostly similar to recent ones. The upper mantle (above 200 km depth) contains peridotitic rocks attributable to crystal-liquid differentiation and metamorphism. Volatile elements exist in mica and other minerals, but are sparse. Abundances of siderophile and chalcophile elements are high enough to require late accretion of material rich in these elements, the presence of a barrier between upper mantle and core, and some extraction by sinking sulphide. The mantle (deeper than 200 km) and core are inaccessible to direct study but interpretation of seismic data coupled with high-pressure laboratory studies requires inversion to dense phases in the mantle (especially perovskite?) and presence of light elements in the core (mainly S?). The bulk composition is modelled by cosmochemical analogy constrained by geophysical and geochemical parameters. The early condensate may be augmented by 1.5 ± 0.5? over (Mg+Si), and metal by 1.2±0.1?, while alkalies are probably depleted six-fold. Radial heterogeneity from a reduced interior to an oxidized exterior is suggested. For the Moon, sections cover observations, petrologic interpretations, and bulk chemical composition. For the origin of the Earth and Moon, age constraints, chemical constraints, and dynamical and accretional constraints allow comparison of suggested origins, with the conclusion that the Moon formed by either fission or disintegrative capture during early growth of the Earth, followed by simultaneous accretion coupled with disintegrative capture of planetesimals.

Mercury must be Fe-rich, but the silicate may not be just early condensate. For Venus, reviews are given of the surface properties, atmosphere, speculations on bulk composition and speculations on surface mineralogy and atmospheric compositions. The CO2 is in the atmosphere; most H may have been lost with concomitant oxidation of rocks; K/U ratios suggest basaltic and granitic rocks, and the high-surface temperature (c.740 K) implies granulitic metamorphism. For Mars, reviews are given of surface morphology, atmosphere and volatiles, mineralogy and petrology, and geophysical and geochemical models. Prolonged emission of Fe-rich lavas is suggested. Volatiles were removed by mineralogical processes from the atmosphere to give ice caps and sediments affected by aeolian processes and oxidation from photochemically generated H2O2. Fe-rich layer silicates, maghemite, and Mg-sul-phate may dominate the sediments.

The composition of comets and interplanetary dust may be inferrable from micrometeorites whose complex properties are suggestive of carbonaceous meteorites. Asteroids should be supplying at least many of the meteorites to Earth. A general description and review of remote-sensing studies culminate in a review of spatial descriptions and implications. The main belt is dominated by dark C-type asteroids assumed to be the primordial inhabitants produced by primary condensation and local accretion. The inner zone contains some brighter S-type asteroids interpreted as having undergone separation of metal from silicate as in stony-iron meteorites, as well as some E- and M-types perhaps matching enstatite-bearing meteorites and irons. Perhaps these differentiated(?) asteroids, as well as basaltic Vesta, are strays perturbed outwards from the inner solar system.

A review of meteorites covers carbonaceous meteorites, ordinary chondrites, enstatite chondrites and achondrites, reduced irons, forsterite-bearing meteorites and silicate inclusions in irons, irons, pallasites, chassignites and nakhlites, ureilites and lodranite, eucrites and shergottites, diogenites, howardites and mesosiderites, oxygen isotopes, and original location of meteorites. Emphasis is placed on mineralogical properties demonstrating crystal-liquid differentiation, brecciation, agglomeration, and even aqueous alteration and vapour transfer, though some evidence remains of direct condensation of gas to solid. The meteorites demonstrate the existence of many parent bodies (probably over 60), and most macrometeorites are ascribed to collision debris from the main-belt asteroids that has been deflected past Mars. The range of oxygen isotopes is explained by mixing of supernova debris rich in 16O with gas-solid differentiates of the nebula.

The culmination of the review is a suggested synthesis, which emphasizes a new model of heterogeneous accretion from planetesimals whose diverse compositions range from reduced material near Mercury to oxidized material from the asteroid zone outwards. Growth of a terrestrial planet begins from near-by slow planetesimals, and ends with distant fast planetesimals. Only the Earth and Venus are big enough to retain debris from late volatile-rich planetesimals deflected to high speed by the giant planets. Mercury, Moon, and Mars are volatilepoor. The Earth is zoned from a reduced interior, composed of crystal-liquid segregates of planetesimals captured early, to an oxidized exterior containing some material captured from outside the orbit of Mars. A mantle barrier hindered chemical equilibration. Hydrogen loss augmented oxidation. The mantle may be chemically zoned inwards from olivine-rich composition to pyroxene-rich composition, and the core should be reduced and contain substantial S and perhaps C and P. Mercury and Venus should have accreted reduced material, and only Venus should contain volatiles obtained from late planetesimals from outside the Martian orbit. Mars should have accreted mainly S-type asteroids, and have captured little volatile-rich material.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Aannestad, (P.A.), 1975. Absorptive properties of silicate core-mantle grains. Astrophys. J. 200 30-41.CrossRefGoogle Scholar
Adams, (J.B.), 1975. Interpretation of visible and near-infrared diffuse reflectance spectra of pyroxenes and other rock-forming minerals. In Infrared and Raman Spectrosaopy of Lunar and Terrestrial Minerals, 91-116; ed. Karr (C), New York (Academic Press).CrossRefGoogle Scholar
Adams, (J.B.) and McCord, (T.B.), 1976. Mercury: evidence for an anortho-sitic crust from reflectance spectra. Lunar Science Institute Contrib. 262, 1.Google Scholar
Ahrens, (T.J.), 1976. Shock wave data for pyrrhotite and constraints on composition of the outer core. U.S.-Japan Seminar on High-Pressure Research Applications in Geochemistry, Honolulu, Abstracts, p.31.Google Scholar
Ahrens, (T.J.), 1978. Equations of state of iron sulfide and constraints on the sulfur content of the Earth. Ms.CrossRefGoogle Scholar
Akimoto, (S.) and Akaogi, (M.), 1977. Pyroxene- garnet solid solution equilibria in the Earth's mantle. Second Int. Kimberlite Conf., Ext. Abstr., unpaged.Google Scholar
Ahrens, (T.J.), Yamamoto, (K.) and Aoki, (K.), 1977. Hydroxyl-clinohumite and hydroxyl-chondrodite: possible H2O-bearing minerals in the upper mantle, 163-72. In High-pressure Researah: Applications in Geophysics, eds. Manghnami, (M.) and Akimoto, (S.), New York (Academic Press).Google Scholar
Allen, (M.) and Robinson, (G.U.) 1975. Formation of molecules on small interstellar grains. Astrophys. J. 195, 81-90.CrossRefGoogle Scholar
Anders, (E.), 1964. Origin, age and composition of meteorites. Space Sci. Rev. 3, 583-714.CrossRefGoogle Scholar
Anders, (E.), 1971a. How well do we know “Cosmic” abundances? Geochim. Cosmochim. Acta 35, 516-22.CrossRefGoogle Scholar
Anders, (E.), 197lb. Meteorites and the early solar system. Ann. Rev. Astron. Astrophys. 9, 1-34.Google Scholar
Anders, (E.), 1975. Do stony meteorites come from comets? Icarus 24, 363-71.CrossRefGoogle Scholar
Anders, (E.), 1977. Chemical compositions of the Moon, Earth, and eucrite : Parent body. Phil. Trans. R. Soc. London4 285, 23-40.Google Scholar
Anders, (E.), 1978. Host stony meteorites come from the asteroid belt. In Asteroids: An Exploration Assessment, NASA Special Paper, to be published.Google Scholar
Anders, (E.) and Owen, (T.), 1977. Mars and Earth; origin and abundance of Volatiles. Science 198, 453-65.CrossRefGoogle Scholar
Anders, (E.), Higuchi, (H.), Ganapathy, (R.) and Morgan, (J.W.), 1976. Chemical fractionations in meteorites - IX.C3 chondrites. Geochim. Cosmoahim. Acta 40 1131-9.Google Scholar
Anderson, (K.T.) 1974. Chlorine, sulfur, and water in magmas and oceans. Geol. Soc. Amer. Bull. 85, 1485-92.2.0.CO;2>CrossRefGoogle Scholar
Anderson, (D.L.), 1972. Internal constitution of Mars. J. Geophys. Res. 77, 789-95.CrossRefGoogle Scholar
Anderson, (D.L.), 1973. The composition and origin of the Moon. Earth Planet. Sci. Lett. 18, 301-16.CrossRefGoogle Scholar
Anderson, (D.L.), 1977. Composition of the mantle and core. Ann. Rev. Earth Planet. Sci. 5, 179-202.CrossRefGoogle Scholar
Anderson, (D.L.), Sammis, (C.) and Jordan, (T.), 1971. Composition and evolution of the mantle and core. Science 171, 1103-12.CrossRefGoogle Scholar
Aronson, (J.R.) and Emslie, (A.G.) 1975. Composition of the Martian dust as derived by infrared spectroscopy from Mariner 9. j. Geophys. Res. 80, 4925-31.CrossRefGoogle Scholar
Arrhenius, (G.) and Alfvén, (H.), 1971. Fractionation and condensation in space. Earth Planet. Sci. Lett. 10, 253-67.CrossRefGoogle Scholar
Arrhenius, (G.) and Asunmaa, (S.K.), 1973. Aggregation of grains in space. The Moon 8, 368-91.CrossRefGoogle Scholar
Arrhenius, (G.) and De, (B.R.), 1973. Equilibrium condensation in a solar nebula. Meteoritics, 8, 297-313.CrossRefGoogle Scholar
Ashworth, (J.R.), 1977. Matrix textures in unequilibrated ordinary chondrites. Earth Planet. Sci. Lett. 35, 25-34.CrossRefGoogle Scholar
Ashworth, (J.R.) and Barber, (D.J), 1976 Lithification of gas-rich meteorites. Earth Planet. Sci. Lett. 30, 222-33.CrossRefGoogle Scholar
Baedeker, (P.A.) and Wasson, (J.T.) 1975. Elemental fractionations among enstatite chondrites. Geochim. Cosmochim. Acta 39, 735-65.CrossRefGoogle Scholar
Baird, (A.K.), Toulmin, (P., III), Clark, (B.C.), Rose, (H.J., Jr.), Keil, (K.), Christian, (R.P.) and Gooding, (J.L.), 1977. Mineralogic and petrologic implications of Viking geochemical results from Mars: interim report. Science 194, 1288-93.CrossRefGoogle Scholar
Baldwin, (R.B.) 1963. The Measure of the Moon. Chicago (University of Chicago Press).Google Scholar
Bass, (M.N.), 1971. Montmorillonite and serpentine in Orgueil meteorite. Geochim. Cosmochim. Acta 35, 139-47.CrossRefGoogle Scholar
Bastin, (J.A.) and Butt, (R.V.), 1975. Latitude effects in lunar thermal evolution. Lunar Science VI, 25-7.Google Scholar
Bauman, (A.J.), Devaney, (J.R.) and Bollin, (E.M.), l973. Allende meteorite carbonaceous phase: intractable nature and scanning electron morphology. Nature 241, 264-7.CrossRefGoogle Scholar
Beck, (C.W.) and LaPaz|(L.), 1951. The nortonite fall and its mineralogy. Am. Mineral. 36, 45-59.Google Scholar
Bence, (A.E.) and Burnett, (D.S.), 1969. Chemistry and mineralogy of the silicates and metal of the Kodaikanal meteorite. Geochim. Cosmochim. Acta 33, 387-407.CrossRefGoogle Scholar
Bergemann, (F.) and Wlotzka, (F.), 1969. Shock induced thermal metamorphism and mechanical deformations in the Rumsdorf chondrite. Geoahim. Cosmochim. Aata 33, 1351-70.CrossRefGoogle Scholar
Berkley, (J.L.), Brown, (H.G.,IV), Keil, (K.), Carter, (N.L.), Mercier, (J.-C.C.) and Huss, (G.), 1976. The Kenna ureilite: an ultramafic rock with evidence for igneous, metamorphic, and shock origin. Geochim. Cosmochim. Acta 40, 1429-37.CrossRefGoogle Scholar
Berkley, (J.L.), Taylor, (G.J.) and Keil, (K.), 1978. Ureilites: origin as related magmatic cumulates. Lunar and. Planetary Sci. IX, 73-5.Google Scholar
Best, (M.J.), 1974. Mantle-derived amphibole within inclusions in alkalic-basaltic lavas. J. Geophys. Res. 79, 2107-13.CrossRefGoogle Scholar
Biemann, (K.) and 11 others, 1977. The search for organic substances and inorganic volatile compounds in the surface of Mars. j. Geophys. Res. 82, 4641-58.CrossRefGoogle Scholar
Bild, (R.W.) 1974. New occurrences of phosphates in iron metemrites. Contrib. Mineral. Petrol. 45, 91-8.CrossRefGoogle Scholar
Bild, (R.W.), 1977. Silicate inclusions in group IAB irons and a relation to the anomalous Stones Winona and Mt. Morris (Wis.). Geochim. Cosmochim. Acta 41, 1439-56.CrossRefGoogle Scholar
Bild, (R.W.) and Wasson, (J.T.), 1976. The Lodran meteorite and its relationship to the ureilites. Mineral. Mag. 40, 721-35.CrossRefGoogle Scholar
Bild, (R.W.) and Wasson, (J.T.), 1977. Netschaëvo, a new class of chondritic meteorite. Science 197, 58-62.CrossRefGoogle ScholarPubMed
Binder, (A.B.), 1969. Internal structure of Mars. J. Geophys. Res. 74, 3110-18.CrossRefGoogle Scholar
Binder, (A.B.), 1976. On the petrology and early development of the moon of fission origin. The Moon 15, 275-314.CrossRefGoogle Scholar
Binder, (A.B.) and Davis, (D.R.), 1973. Internal structure of Mars. Phys. Earth Planet. Int. 7, 477-85.CrossRefGoogle Scholar
Binder, (A.B.) and Voss, (J.), 1978. The moon's internal structure and its compositional and seismic implications. Lunar and Planetary Sci. IX, 97-9.Google Scholar
Binder, (A.B.) and 7 others, 1977. The geology of the Viking Lander 1 sites. J. Geophys. Res. 82, 4439-51.CrossRefGoogle Scholar
Binns, (R.A.), 1968. Cognate xenoliths in chondritic meteorites: examples in Mezo-Madaras and Ghubara. Geochim. Cosmochim. Acta 32, 299-317.CrossRefGoogle Scholar
Binns, (R.A.) and Groves, (D.I.), 1976. Iron-nickel partition in metamorphosed olivine-sulfide assemblages from Perseverance, Western Australia. Am. Mineral. 61, 782-7.Google Scholar
Binz, (C.M.), Kurimoto, (R.K.) and Lipschutz, (M.E.), 1974. Trace elements in primitive meteorites - V. Abundance patterns of thirteen trace elements and interelement relationships in enstatite chondrites. Geoahim. Cosmoahim. Acta 38, 1579-1606.CrossRefGoogle Scholar
Binz, (C.M.), Ikramuddin, (H.) and Lipschutz, (M.E.), 1975. Contents of eleven trace elements in ureilite achondrites. Geochim. Cosmochim. Acta 39, 1576-9.CrossRefGoogle Scholar
Binz, (C.M.), Ikramuddin, (M.), Rey, (P.) and Lipschutz, (M.E.), 1976. Trace elements in primitive meteorites - VI. Abundance patterns of thirteen trace elements and interelement relationships in unequilibrated ordinary Chondrites. Geochim. Cosmochim. Acta 40, 59-71.CrossRefGoogle Scholar
Bishop, (F.C.) Smith, (J.V.) and Dawson, (J.B.), 1975. Pentlandite-magnetite intergrowth in DeBeers spinel lherzolite: review of sulpmides in nodules. ,Phys. Chem. Earth 9, 323-37.CrossRefGoogle Scholar
Bishop, (F.C.) Smith, (J.V.) and Dawson, (J.B.), 1978. Na,K,P and Ti in garnet pyroxene and olivine from peridotite and eclogite xenoliths from African Kimberlites. Lithos 11, 155-73.CrossRefGoogle Scholar
Blanchard, (M.B.), Brownlee, (D.E.), Bunch|(T.E-), Hodge, (P.W.) and Kyte, (F.T.), 1978. Spheres from deep sea sediments: a way to study meteoroid compositions with time. Earth Planet. Sci. Lett. To be submitted.Google Scholar
Blaner, (M.) and Abdel-Gawad, (M.), 1969. The Origin of meteorites and the constrained equilibrium condensation theory. Geochim. Cosmochim. Acta 33, 701-16.CrossRefGoogle Scholar
Blaner, (M.) and Fuchs, (L.H.), 1975. Calcium-aluminum-rich inclusions in Allende meteorite: evidence for a liquid origin. Geochim. Cosmochim. Acta 39, 1605-19.Google Scholar
Blaner, (M.) Planner, (H.N.), Keil, (K.), Nelson, (L.S.) and Richardson, (N.L.), 1976 The origin of chondrules: experimental investigation of netastabie liquids in the system Mg2SiO2-SiO2 . Geochim. Cosmochim. Acta 40, 339-96.Google Scholar
Blasius, (K.R.), 1976. The record of impact cratering on the great volcanic shields of the Tharsis region of Mars. Icarus 29, 343-61.CrossRefGoogle Scholar
Blasius, (K.R.), Cutts, (J.A.), Guest, (J.E.) and Masursky, (H.), 1977. Geology of the Valles marineris: first analysis of imaging from the Viking lorbiter imaging mission. J. geophys Res. 82, 4067-91.CrossRefGoogle Scholar
Boctor, (N.Z.), Meyer, (H.O.A.), Kullerud, (G.), 1976. Lafayette meteorite: petrology and opaque mineralogy. Earth Planet. Sci. Lett. 32, 69-76.CrossRefGoogle Scholar
Booth, (M.C.) and Kieffer, (H.H.), 1978. Carbonate formation in Marslike environments. J. Geophys. Res. 83, 1809-15.CrossRefGoogle Scholar
Boyd, (F.R.), 1973. A pyroxene geotherm. Geochim. Cosmochim. Acta 37, 2533-46.CrossRefGoogle Scholar
Boyd, (F.R.) and McCallister, (R.H.), 1976. Densities of fertile and sterile garnet peridotites. Geophys. Res. Lett. 3, 509-12.CrossRefGoogle Scholar
Boyd, (F.R.), England, (J.L.) and Davis, (B.T.C), 1964. Effects of pressure on the, melting and polymorphism of enstatite, MgSiO3. J. Geophys. Res. 69, 2101-09.CrossRefGoogle Scholar
Boynton, (W.V.), Starzyk, (P.M.) and Schmitt, (R.A.), 1976. Chemical evidence for the genesis of the ureilites, the achondrite Chassigny and the nakhlites. Geochim. Cosmochim. Acta 40, 1439-47.CrossRefGoogle Scholar
Braun, (W.von) and Ordway, (F.J.,III), 1975. History of Rocketry and Space Travel. 3rd Ed., New York (Thomas Crowell).Google Scholar
Brett, (R.), 1967. Cohenite: its occurrence and a proposed origin. Geochim. Cosmochim. Acta 31, 143-59.CrossRefGoogle Scholar
Brett, (R.), 1976. The current status of speculations on the composition of the core of the earth. Rev. Geophys. Space Phys. 14, 375-83.CrossRefGoogle Scholar
Brett, (R.), 1977. The case against early melting of the bulk of the Moon. Geochim. Cosmochim. Acta 41, 443-5.CrossRefGoogle Scholar
Brey, (G.) and Green, (D.K.), 1977. Petrogenesis of olivine melilitite and kimberlite and melting of peridotite-C-O-H. Second Int. Kimberlite Conf., Ext. Abstr., unpaged.Google Scholar
Brownlee, (D.E.), Tomandl, (D.), Blanehard, (M.B.), Ferry, (G.V.) and Kyte, (F.T.), 1976. An Atlas of Extraterrestrial Particles collected with NASA U-2 Aircraft. NASA TMX 73, 152.Google Scholar
Brownlee, (D.E.), Tomandl, (D.) and Olszewski, (E.), 1977. Interplanetary dust: A new source of extraterrestrial material for laboratory study. Proc. Lunar Sci. Conf. 8th, 149-60.Google Scholar
Buchwald, (V.F.), 1975. Iron Meteorites. Berkeley (University of California Press).Google Scholar
Bunch, (T.E.), 1975. Petrography and petrology of basaltic achondrite polymict breccias (howardites). Proc Lunar Sci. Conf. 6th, 469-92.Google Scholar
Bunch, (T.E.) and Chang, (S.), 1978a. Carbonaceous chondrite (CM2) phyllosilicates: condensation or alteration origin? Lunar and Planetary Sci. IX, 134-6.Google Scholar
Bunch, (T.E.) and Chang, (S.), 1978b. Carbonaceous chondrite phyllosilicates and their bearing on parent body surface conditions. Geochim. Cosmochim. Acta. To be submitted.Google Scholar
Bunch, (T.E.) and Fuchs, (L.H.), 1969. A new mineral, brezinaite Cr3S4, and the Tucson meteorite. Am. Mineral. 54, 1509-18.Google Scholar
Bunch, (T.E.) and Olsen, (E.), 1968. Potassium feldspar in Weekeroo Station, kodaikanal, and Colomera iron meteorites. Science 160, 1223-5.CrossRefGoogle ScholarPubMed
Bunch, (T.E.) and Reid, (A.M.), 1975. The nakhlites Part I: Petrography and mineral chemistry. Meteoritics 10, 303-15.CrossRefGoogle Scholar
Bunch, (T.E.) and Stöffler, (D.), 1974. The Kelly chondrite: a parent body surface metabreccia. Contr. Mineral. Petrol. 44, 157-71.CrossRefGoogle Scholar
Bunch, (T.E.), Chang, (S.) and Frick, (U.), 1978. Characterization and significance of carbonaceous chondrite (CM2) xenoliths in the Jodzie howardite. Geochim. Cosmochim. Acta, submitted.Google Scholar
Bunch, (T.E.), Keil, (K.) and Olsen, (E.), 1970. Mineralogy and petrology of silicate inclusions in iron meteorites. Contr. Mineral. Petrol. 25, 297-340.CrossRefGoogle Scholar
Bunch, (T.E.), Keil, (K.) and Snetsinger, (K.G.) Chromite Composition in relation to chemistry and texture of ordinary chondrites. Geoohim. Cosmochim. Acta Q. 31, 1569-82.Google Scholar
Burns, (J.A.), 1973. Where are the satellites of the inner planets? Nature 242, 23-5.Google Scholar
Burns, (R.G.), 1974. Partitioning of transition metals in mineral structures of the mantle, 555-72. In Physics and Chemistry of Minerals and Rocks, ed. Strens, (R.G.J.), Chichester, England (John Wiley).Google Scholar
Buseck, (P.R.), 1977. Pallasite meteorites-mineralogy, petrology and geochemistry. Geochim. Cosmochim. Acta 41, 711-40.CrossRefGoogle Scholar
Buseck, (P.R.) and Goldstein, (J.I.), 1969. O1ivine compositions and cooling rates of pallasitic meteorites. Geol. Soc. Amer. Bull. 80, 2141-58.CrossRefGoogle Scholar
Buseck, (P.R.) and Holdsworth, (E.), 1977. Phosphate minerals in pallasite meteorites. Mineral. Mag. 41, 91-102.CrossRefGoogle Scholar
Cameron, (A.G.W.) 1975. Clumping of interstellar grains during formation of the primitive solar nebula. Icarus 24, 128-33.CrossRefGoogle Scholar
Cameron, (A.G.W.) and Pine, (M.R.), 1973. Numerical models of the primitive solar nebula. Icarus 18, 377-406.CrossRefGoogle Scholar
Cameron, (A.G.W.), and Truran, (J.W.), 1976. The supernova trigger of the formation of the Solar System. Icarus 30, 447-61.CrossRefGoogle Scholar
Cameron, (A.G.W.) and Ward, (W.R.), 1976. The origin of the moon. Lunar Sci. VII, 102-2.Google Scholar
Campbell, (D.B.), Oyce, (R.B.) and Pettengill, (G.H.), 1976. New radar image of Venus. Science 193, 1123-4.CrossRefGoogle ScholarPubMed
Carmichael, (I.S.E.), Turner, (F.d.) and Verhoogen, (J.), 1974. Igneous Petrology. New York (McGraw-Hill).Google Scholar
Carr, (M.H.) Schaber, (G.G.), 1977. Martian permafrost features. J Geophys, Res. 82, 4039-54.CrossRefGoogle Scholar
Carr, (M.H.) and 12 others, 1977a. Preliminary results from the Viking Orbiter imaging experiment. Science 193, 766-76.CrossRefGoogle Scholar
Carr, (M.H.), Greeley, (R.), Blasius, (K.R.),Guest, (J.E.) and Murray, (J.B.), 1977b. Some Martian volcanic features as viewed from the Viking orbiters, J. Geophys. Res. 82, 3985-4015.CrossRefGoogle Scholar
Carr, (M.H.), Crumpler, (L.S.), Cutts, (J.A.), Greeley, (R.) Guest, (J.E.) and Masursky, (H.), 1977c. Martian impact craters and emplacement of ejecta by surface flow. J. Geophys, Res. 83, 4055-65.CrossRefGoogle Scholar
Carswell, (D.A.), 1975. Primary and secondary phlogopites and clinopyroxenes in garnet lherzolite xenoliths. Phys. Chem, Earth 9 417-29.CrossRefGoogle Scholar
Cassen, (P.), Young, (R.E.), Schubert, (G.) and Reynolds, (R.T.) 1976. Implications of an internal dynamo for the thermal history of Mercury. Icarus 28, 501-8.CrossRefGoogle Scholar
Chapman, (C.R.), Jones, (K.L.) 1977. Cratering and obliteration history of Mars. Ann. Rev. Earth. Planet. Sci. 5, 515-40.CrossRefGoogle Scholar
Chapman, (C.R.) 1976. Asteroids as meteorite Parent-bodies: tbe astronomical perspective. Geochim. Cosmochim. Acta 40, 701-19.CrossRefGoogle Scholar
Chapman, (C.R.), Merrison, (D.) and Zellner, (B.), 1975. Surface properties of asteroids: a synthesis of polarimetry, radionmetry and spectrophotoemetry. Icarus 25, 104-30.CrossRefGoogle Scholar
Chou, (C.-L.) and Cohen, (A.J.), 1973. Gallium and germanium in the metal and silicates of L- and LL-chondrites. Geochim. Cosmochim, Acta 37, 315-27.CrossRefGoogle Scholar
Chou, (C.-L.) Baedecker, (P.A.) and Wasson, (J.T.), 1976. Allende Inclusions: Volatile-elenent distribution and evidence for incomplete volatilization of presolar solids. Geochim. Cosmochim. Acta 40, 85-94.Google Scholar
Christophe Michel-Levy, (M.), 1976. Le matrice noir et blanche de la chondrite de Tieschitz (H3). Earth Planet sci. Lett. 30. 143-50.CrossRefGoogle Scholar
Clark, (B.C.) and 7 others, 1977. Inorganic analyses of Matian, Surface Samples at the Viking) landing Sites. Science 194, 1283-8.CrossRefGoogle Scholar
Clark, (S,P., Jr.), 1966. Ed. Handbook of Physical Contants. Geol. Soc. America, Mem. 97.Google Scholar
Clark, (S,P., Jr.) Turekian, (K.K.) and Grossman, (L.), 1972. Model for the early history of the Earth, 3-18, in The Nature of the Solid Earth, ed. E.C., Robertson, New York (McGraw-Hill).Google Scholar
Clarke, (R.S., Jr) and Goldstein, (J.l.), 1978. Schreibersite growth and its influence on the metallography of coarse-structured iron neteorites. Smithsonian Contrib. Earth Sci. no. 21, 80pp.Google Scholar
Clayton, (D.D.), 1977a Solar system isotopic anomalies: supernova neighbor or presolar carriers. Icarus 32, 255-69.CrossRefGoogle Scholar
Clayton, (D.D.), 1977b. Cosmoradiogenic ghosts and the origim of Ca-Al-rich inclusions. Earth Planet. Sci. Lett. 33, 398-410.CrossRefGoogle Scholar
Clayton, (R.N.), 1978. Isotope anomalies in the early solar system. Am. Rev. Nuclear Sci., submitted.CrossRefGoogle Scholar
Clayton, (R.N.) and Mayeda, (T.K.) 1977. Correlated oxygen and magnesium Isotope anomalies in Allende inclusions, I. Oxygen. Geophys. Rec. Letters 4, 295-8.CrossRefGoogle Scholar
Clayton, (R.N.), and Mayeda, (T.K.), 1978. Genetic relations between iron and Stony metedrites, Earth Planet. Sci. Lett. 40, 168-174.CrossRefGoogle Scholar
Clayton, (R.N.), Onuma, (M.) and Mayeda, (T.K.), 1976 A classification of meteorites based on oxygen isotopes. Earth Planet. Sci. Lett, 30, l0-18.CrossRefGoogle Scholar
Clayton, (R.N.), Onuma, (M.), Grossman, (L.) and Mayeda, (T.K.), 1977. Distribution of the pre-Solar component in Allende and other carbonaceous. chondrites. Earth Planet. Sci. Lett. 34. 209-24.CrossRefGoogle Scholar
Consolmagno, (G.J.) and Drake, (M.J.), 1977. Composition and evolution of the eucrite parent body: evidence from rare earth element. Geochim Cosmochim. Acta 41, 1271-82.CrossRefGoogle Scholar
Counselman, (C.C., III), 1979. Outcomes of tidal evolution. Astrophys. J. 180, 307-14.CrossRefGoogle Scholar
Craig, (H.) and Lupton, (J.E.), 1976. Primordial neon, helium and hydrogen in oceanic basalts. Earth Planet. Sci. Lett. 31, 369-85.CrossRefGoogle Scholar
Curtis, (S.A.) and Hartle, (R.E.), 1977. Wind enhanced planetary escape: ccollisional modifications. J Geophys. Res. 82, 1206-10.CrossRefGoogle Scholar
Cutts, (J.A.), Blasius, (K.R.) Briggs, (G.A.), Carr, (M.H.), Greeley, (R.) and Masursky, (H.), 1977. North polar region of Mars: imaging results from Viking 2. Science 194, 1329-37.CrossRefGoogle Scholar
Daly, (S.F.) and Richter, (F.M.) 1978. Convection with decaying heat sources: a simple thermal evolution model , Lunar and. Planetary Sci. IX, 213-4.Google Scholar
Darwin, (G.H.), 1906. on the Figure and stability of a liquid satellite. Phil Trans. R. Soc. London 206, 161-248.Google Scholar
Davies, (G.F.), 1974. Limits on the contritution of the lower mantle. Geophys. J.R. Astron. Soc. 38, 479-503.Google Scholar
Davies, (G.F.) 1977. Whole-mantle- convection and plate tectonics. Geophys. J.R. Astron. Soc. 49, 459-86.CrossRefGoogle Scholar
Davis, (A.M.), Danapathy, (R.) and Grossman, (L.), 1977. Pontlyfni: a differentiated meteorite related to the group IAB irons. Earth Planet. Sci. Lett. 35., 19-24.CrossRefGoogle Scholar
Dawson, (J.B.) and Smith, (J.V.), 1975. Occurrence of diamond in a mica-garnet lherzolite xenolith from kimberlite. Nature 254, 580-l.CrossRefGoogle Scholar
Dawson, (J.B.) and Stephens, (W.E.), 1975. Statistical classification of garnets from kimberlite and associated xenoliths. J. Geol. 83, 589-607.CrossRefGoogle Scholar
Day, (K.L.), 1975. Measured extinction of small olivine Spheres. Astrophs.J. 199, 660-2.CrossRefGoogle Scholar
Degewij, (J.) and Zellner, (B.), 1978. Asteroid surface variegation. Lunar and. Planetary Sci. IX, 235-7.Google Scholar
Delsemme, (A.H.), 1977. Ed. of Comets-Asteroids-Meteorites, Toledo. Ohio (University of Toledo Press).Google Scholar
Desnoyers, (C.) and Jerome, (D.Y.), 1977. The Malvern howardite: a petrological and chemical discussion. Geochm. Cosmochim. Acta 41, 81-6.CrossRefGoogle Scholar
Doan, (A.S.) and Goldstein, (J.I.), 1969. The formation of phosphides in iron meteorites, 763-79. In Meteorite Research, ed. P.M., Millman, Dordrecht, Holland (Reidel, D.).CrossRefGoogle Scholar
Dobrovolskis, (A.) and Ingersoll, (A.P.) 1975. Carbon dioxide-water clath-rate as a reservoir of CO2 on Mars. Icarus 26 , 353-7.Google Scholar
Dodd, (R.T.), l969. Metamorphism of the ordinary Chondrites: A review. Geochim. cosmochim. Acta 33, 161-203.CrossRefGoogle Scholar
Dodd, (R.T.) 1971. The petrology of chondrules in the Sharps meteorite. Contr. Mineral. Petrol. 31. 201-27.CrossRefGoogle Scholar
Dodd, (R.T.), 1973. Minor element abundances in olivines of the Sharps (H-3 ) chondrite. Contr. Mineral. Petrol. 42, 159-67.CrossRefGoogle Scholar
Dodd, (R.T.), 1974. The petrology of chondrules in the Hallingeberg meteorite. Contr. Mineral. Petrol. 47, 97-112.CrossRefGoogle Scholar
Dodd, (R.T.), 1976. Accretion of the ordinary chondrites. Earth Planet. Sci. Lett. 30, 281-91.CrossRefGoogle Scholar
Dodd, (R.T.) 1978. The composition and origin of large microporphyritic chondrules in the Manych (L-3) chondrite. Earth Planet. Sci. Lett. 39. 52-66.CrossRefGoogle Scholar
Dodd, (R.T.) and Jarosewich, (E.) 1976 Olivine microporphyry in the St. Mesmin chondrite. Meteoritics 11, 1-20.CrossRefGoogle Scholar
Dodd, (R.T.), Grover, (J.T.) and Brown, (G.E.) 1975. Pyroxenes in the Shaw (L-7) chondrite. Geochim. cosmochim. Acta 39, 1585-94.CrossRefGoogle Scholar
Dolginov, (Sh.Sh.), 1978. On the magnetic field of Mars: Mars 5 evidence. Geophys. Res. Lett. 5, 93-5.CrossRefGoogle Scholar
Drake, (M.J.) 1976. Evolution of major mineral compositions and trace element abundances during fractional crystallizaton of a model lunar Composition. Geochim. cosmochim. Acta 40, 401-11.CrossRefGoogle Scholar
Dreibus, (G.), Kruse, (H.), Spettel, (B.) and Wanke, |(H.), 1977. The bulk composition of the moon and the eucrite parent body. Proc. Lunar Sci. Conf. 8th, 211-27.Google Scholar
Dufresne, (E.R.) and Anders, (E.), 1962. On the chemical evolution of the carbonaceous chondrites, Geochim. cosmochim. Acta 26, 1085-114.CrossRefGoogle Scholar
Duke, (M.B.), 1968. The Shergotty meteorite: magmatic and shock meta-morphic features. In Shock Memorpbism of Natural Materials, ed. French, B.M. and Short, N.M., 613-21, Baltimore, Md. (Mono Books Corp.).Google Scholar
Duke, (M.B.) and Silver, (L.T.) 1967. Petrology of eucrites, howardites and mesosiderites. Geochim. cosmochim. Acta 31, 1637-65.CrossRefGoogle Scholar
Dyal, (P.), Parkin, (C.W.) and Daily, (W.D.), 1975 Lunar electrical conductivity and magnetic permeability. proc, 6th Lunar Sci. Conf., 2909-26.Google Scholar
Dymek, (R.F.), Albee, (A.L.), Chodos, (A.A.) and Wasserburg, (G.J.), 1976. Petrography of isotopically-dàted claste in the Kapoete howardite and petrologic constraints on the evolution of its parent body. Geochim. cosmochim. Acta 40, 1ll5-30.CrossRefGoogle Scholar
Dymond, (J.) and Hogan, (L.), 1978. Factors controlling the moble gas abundance patterns of deep-sea basalts. Earth Planet. Sci. Lett. 38, 117-28.CrossRefGoogle Scholar
Dzurism, (D.) and Blasius, (K.R.), 1975. Topography of the polar layered deposits of Mars. J. Geophys. Res. 80, 3286-3306.CrossRefGoogle Scholar
Easten, (A.J.) and Hey, (M.H.), 1968. Minor elements present in the silicate phase of enstatite chondrites. Mineral. Mag. 36, 740-2.Google Scholar
Eggler, (D.M.), 1976. Does CO2 cause partial melting in the low-velocity layer of the mantle? Geology 4, 69-72.2.0.CO;2>CrossRefGoogle Scholar
Eggler, (D.M.), 1977. The principle of the zone of invariant vapor composition: an example in the system CaO-MgO-SiO2-CO2-H20 and implications for the mantle solidus. Carnegie Inst. Washington yearb. 76, 428-35.Google Scholar
Ekström, (T.K.), 1972. The distribution of fluorine among some coexisting minerals. Contr. Mineral. Petrol. 34, 192-200.CrossRefGoogle Scholar
El Goresy, (A.), 1965. Mineralbestand und Strukturen der Graphit- und Sulfideinschlüsse in Eisenmeteoriten. Geochim. cosmochim. Acta 29, 1131-51.CrossRefGoogle Scholar
El Goresy, (A.) 1967. Quantitative electron microprobe analyses of co- existing sphalerite, daubreelite and troilite in the Odessa iron meteorite and their genetic implications. Geochim. cosmochim. Acta 31, 1667-76.CrossRefGoogle Scholar
Erlank, (A.J.), 1979. Kimberlite potassic richterite and the distribution of potassium in the upper mantle. Carnegie Inst. Washington Yearb. 68, 433-9.Google Scholar
Falk, (S.W.) and Scalo, (J.M.) 1975. Behavior of grains in early supernova environments. Astrophys. J. 202. 690-5.CrossRefGoogle Scholar
Fanale, (F.P.), 1976. Martian volatiles: their degassing history and geochemical fate. Icarus 28, 179-202.CrossRefGoogle Scholar
Fanale, (F.P.) and Cannon, (W.A.), 1978. Mars: the role of the regolith in determining atmospheric pressure and the atmosphere's response to insolation changes. J. Geophys, Res. 83, 2321-5.CrossRefGoogle Scholar
Fanale, (F.P.) and Cannon, (W.A.) and Owen, (T.), 1978. Mars: regolith adsorption and the, relative concentrations of atmospheric rare gases. Geophys. Res. Lett. 5, 77-80.CrossRefGoogle Scholar
Farmer, (C.B.), 1976. Liquld water on Mars. Icarus 28 279-89.CrossRefGoogle Scholar
Farmer, (C.B.), Davies, (D.W.) and Laporte, (D.D.), 1977 Mars: northern summer ice cap-water vapor observations from Viking 2. Scienoe 194, 1399-41.Google Scholar
Field, (G.B.) and Cameron, (A.G.W.), eds., 1973. The Dusty Universe. New York (Reale Watson Academic Pmplications).Google Scholar
Finger, (L.W.) Hazen, (R.M.) and Yagi, (T.), 1977. High-pressure crystal structures of the spinel polymorphs of Fe2SiO4 and Ni2SiO4 . Carnegie Institution of Washington Yearb. 76, 504-8.Google Scholar
Fitzgerald, (M.J.) and Jones, (J.B.), 1977. Adelaide and Bench Crater -members of a new subgroup of the carbonaceous chondrites. Meteoritics 12, 443-58.CrossRefGoogle Scholar
Floran, (R.J.) and Prinz, (M.), 1978. Silicate petrography and classification of the mesosiderites. Lunar and. Planetary Sci. IX 329-31.Google Scholar
Floran, (R.J.) and Prinz, (M.) Hlava, (P.F.), Keil, (K.), Mehru, (C.E.) and Hinthorne, (J.R.), 1977a Chassigny revisited: a cumulate dunite with hydrous amphibole-bearing melt inclusions. Meteoritics 12, 225-6. (Abstr.)Google Scholar
Floran, (R.J.) and Prinz, (M.) Hlava, (P.F.), Keil, (K.), Spettel, (B.) and Wänke, (H.), 1977b. The Johnstown orthopyroxenite (diogenite) and its relationship to meteoritic cumulates, meteoritics 12, 226-7. (Abstr.).Google Scholar
Floran, (R.J.), Caulfied, (J.B.D.), Harlow, (G.E.) and Prin, (M.), 1978. Impact-melt origin for the Simondium, Hainholz, and Pinnaroo mesosiderites, Lunar and. Planetary Sci. IX, 326-8.Google Scholar
Florensky, (C.P.) and 8 others, 1977. The surface of Venus as revealed by Soviet Venera 9 and l0. Geol. Soc. Amer. Bull. 88, 1537-45.2.0.CO;2>CrossRefGoogle Scholar
Fodor, (R.V.) and Keil, K., 1976. A komatiite-like lithic fragment with spinifex texture in the Eva meteorite: origin from a supercooled impact melt of chondritic parentage. Earth Planet. Sci. Lett. 29, 1-6.CrossRefGoogle Scholar
Fodor, (R.V.) and Keil, K. Wilkening, (L.L.), Bogard, (D.D.) and Gibson, (E.K.) 1976. Origin and history of a meteorite parent-body regolith breccia: carbonaceous and noncarbonaceous lithic fragments in the Abbott, Ne∼ Mexico, chondrite. New Mexico Geol. Soc. Spec. Publ. no. 6, 206-18.Google Scholar
Foshag, (W.F.), 1940. The Shallowater meteorite: a new aubrite. Am. Mineral. 25, 779-86.Google Scholar
Frederiksson, (K.) and Keil, (K.), 1963. The light-Dark structure in the Pantar and Kapoeta stone meteorites. Geochim. cosmochim. Acta 27, 717-39.CrossRefGoogle Scholar
French, (b.M.), 1971. How did Venus lose its angular momentem? Science 173, 169-70. Reply by S. F. Singer, 170.CrossRefGoogle Scholar
French, (b.M.) and Short, (B.M.), 1960. Eds. of Shock Metamorphism of Nature Materials. Baltimrore, Maryland (Mono Book Corp.).Google Scholar
Frey, (H.), 1974. Surface features On Mars: ground-based albedo and radar compared with Mariner g topography. J Geophys. Res. 79 3907-16.CrossRefGoogle Scholar
Fricker, (P.E.) and Reynolds, (R.L.), 1968. Development of the atmosphere of Venus. Icarus 9, 221-30.CrossRefGoogle Scholar
Frondel, (J.W.), 1975. Lunar Mineralogy. New York (John Wiley).Google Scholar
Fryer, (B.J.), 1977 Rare earth evidence in iron-formations for changing Precambrian oxidation states. Geochim. cosmochim. Acta 41, 361-7.CrossRefGoogle Scholar
Fuchs, (L.H.) and Olsen, (E.), 1973. Composition of metal in Type III carbonaceous chondrites and its relevance to the source-assignment of lunar metal. Earth Planet. Sci. Lett. 18, 379-84.CrossRefGoogle Scholar
Fuchs, (L.H.) and Olsen, (E.) and Henderson|(E.P.), 1967. On the occurrence of the brianite and panethite, two new phosphate minerals from the Dayton meteorite. Geochim. cosmochim. Acta 31 , 1711-9.CrossRefGoogle Scholar
Fuchs, (L.H.) and Olsen, (E.) and Jansen, (K.J.), 1973. Mineralogy, mimeral-chemistry, and composition of the Murchison (c2) meteorite. Smithsonian contr. Earth Sciences, no. l0.CrossRefGoogle Scholar
Fukuoka, (T.), Ma, (M.-S.), Wakita, (H.) and Schmitt, (R.A.), 1978. Lodran: the residue of limited partial melting of matter like a hybrid between H and E ohondrites. Lunar and. Planetary Sci. IX, 356-8.Google Scholar
Gaffey, (M.J.), 1976. Spectral reflectance characteristics of the meteorite classes. J. Geophys. Res, 81, 905-20.CrossRefGoogle Scholar
Gaffey, (M.J.) and McCord, (T.B.) 1977. Asteroid surface materials: mineralogical characterizations and cosmological implications. Proc. Lunar Sci. Conf. 8th, 113-43.Google Scholar
Gaffey, (M.J.) and McCord, (T.B.), 1978. Asteroid surface materials: mineralogical characterizations from reflectance spectra. Space Science Reviews, submitted.CrossRefGoogle Scholar
Gale, (N.H.), Arden, (J.W.) and Hutchison, (R.), 1975. The chronology of the Makhla achondritic meteorite. Earth Planet. Sci. Lett. 26 195-206.CrossRefGoogle Scholar
Ganapathy, (R.) and Anders, (E.) 1974. Bulk compositions of the moon and earth, estimated from meteorites. Proc. Lunar Sci. Conf. 5th, l181-1206.Google Scholar
Gancarz, (A.J.) and Wasserburg, (G.J.), 1977. Initial Pb of the Amitsoq gneiss, West Greenland, and implications for the age of the Earth. Geochim. cosmochim. Acta 41, 1283-1301.CrossRefGoogle Scholar
Ganguly, (J.) and Kennedy|(G.C.), 1977. Solubility of K in Fe-S liquid silicate-K-(Fe-S)liq equilibria, and their planetary implications. Earth Planet. Sci. Lett. 35, 411-20.CrossRefGoogle Scholar
Gibson, (E.K., Jr.) and Moore, (C.B.), 1971. The distribution of total nitrogen in iron meteorites. Geochim. cosmochim. Acta 35, 877-90.CrossRefGoogle Scholar
Gibson, (E.K., Jr.) and Moore, (G.W.). 1973. Carbon and sulfur distributions and abundances in lunar fines. Proc. Forth Lunar Sci. Conf. 2, 1577-86.Google Scholar
Gilbert, (F.) and Dziewonski, (A.M.), 1975. An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra. Phil. Trans. R. Soc. London 278, 187-269.Google Scholar
Gilman, (R.C.), ]969. On the composition of interstellar grains. Astrophs.J. 155, L185-7.Google Scholar
Goettel, (K.A.), 1974 Potassium in the Earth's core: evidence and implications, 479-89. In Physics and Chemistry of Minerals and Rocks, ed. Strens, (R.B.J.), London (John Wiley).Google Scholar
Goins, (M.R.), Dainty, (A.M.) and Toksöz, (M.N.), 1977. The deep seismic structure of the Moon. Proc. Lunar Sci. Conf. 8th, 471-86.Google Scholar
Goldreich, (P.) and Ward, (W.R.), 1973. The formation of planetesimals. Astrophs.J. 183, 1051-61.CrossRefGoogle Scholar
Goldsmith, (J.R.), 1976. Scapolites, granulites, and volatiles in the lower crust. Geol. Soc. Am. Bull. 87, 161-8.2.0.CO;2>CrossRefGoogle Scholar
Goldsmith, (J.R.), Newton, (R.C.) and Moore, (P.B.), 1974. Silicate-nitrate compounds: high-pressure synthesis and stability of a nitrate scapolite. Am. Mineral. 59, 768-74.Google Scholar
Goldstein, (J.I.) and Axon, (H.J.), 1973. The Widmanstätten figure in iron meteorites. Naturwiss. 60, 313-21.CrossRefGoogle Scholar
Goldstein, (J.I.) and Doan, (A.S., Jr.), 1972. The effect of phosphorus on the formation of the Widmanstätten pattern in iron meteorites. Geochim. cosmochim. Acta 36. 51-69.CrossRefGoogle Scholar
Goldstein, (J.I.) and Short, (J.M.), 1967. The iron meteorites, their thermal history and parent bodies, Geochim. cosmochim. Acta 31 , 1733-70.CrossRefGoogle Scholar
Goldstein, (R.M.), Green, (R.R.) and Rumsey, (H.C.), 1976. Venus radar images. J Geophys. Res. 8l, 4807-17.Google Scholar
Gooding, (J.L.), l978. chemical weathering on Mars. Thermodynamic stabilities of primary minerals (and their alteration products) from mafic igneous rocks. Icarus 33, 483-513.CrossRefGoogle Scholar
Cooley, (R.) and Moore, (C.B.), 1976. Native metal in diogenite meteorites. Am. Mineral. 61, 373-8.Google Scholar
Gradie, (J.) and Zellner, (B.), 1977. Asteroid families: observational evidence for common origins. Science 197, 254-5.CrossRefGoogle ScholarPubMed
Graham, (A.L.), Easton, (A.J.), Hutchison, (R.) and Jérome, (D.Y.), 1976. The Bovedy meteorite; mineral chemistry and origin of its Ca-rich glass inclusions. Geochim. cosmochim. Acta 40, 529-35.CrossRefGoogle Scholar
Graham, (A.L.), Easton, (A.J.) and Hutchison, (R.), 1977a. The Mayo Belwa achondrite: a new enstatite achondrite fall. Mineral. Mag. 41, 487-92.CrossRefGoogle Scholar
Graham, (A.L.), Easton, (A.J.) and Hutchison, (R.), 1977b. Forsterite chondrites; the meteorites Kakangari, Mount Morris (Wisconsin), Pontlyfni and Winona. Mineral. Mag. 4l, 20l-l0.Google Scholar
Greeley, (R.), Theilig, (E.), Guest, (J.E.), Carr, (M.H.), Masursky, (H.) and Cutts, (J.A.), 1977. Geology of Chryse Planitia. J Geophys. Res. 82, 4093-109.CrossRefGoogle Scholar
Green, (D.H.). 1975. Genesis of Archaean peridotitic magmas and constraints on Archaean geothermal gradients and tectonics. Geology 3, 15-8.2.0.CO;2>CrossRefGoogle Scholar
Green, (H.W., II), Radcliffe, (S.V.) and Heuer, (A.H.), 1971. Allende meteorite: a high-voltage electron petrographic study. Science 172, 936-9.CrossRefGoogle ScholarPubMed
Grossman, (L.), 1972. Condensation in the primitive solar nebula, Geochim. cosmochim. Acta 36, 597-619.CrossRefGoogle Scholar
Grossman, (L.), 1975. Petrography and mineral chemistry of Ca-rich inclusions in the Allende meteorite. Geochim. cosmochim. Acta 39, 433-54.CrossRefGoogle Scholar
Grossman, (L.) and Clark, (S.P., Jr.), 1973. High-temperature condensates in chondrites and the environment in which they formed. Geochim. cosmochim. Acta 37, 635-49.CrossRefGoogle Scholar
Grossman, (L.) and Ganapatby, (R.), 1976. Trace elements in the Allende meteorite - I. Coarse-grained, Ca-rich inclusions. Geochim. cosmochim. Acta 40, 331-44.CrossRefGoogle Scholar
Grossman, (L.) and Larimer, (J.W.), 1974. Early chemical history of the solar system. Rev. Geophysics Space Physics 12, 71-101.CrossRefGoogle Scholar
Grossman, (L.) and Olsen, (E.), 1974. Origin of the high temperature fraction of chondrites. Geochim. cosmochim. Acta 38 . 173-87.CrossRefGoogle Scholar
Grossman, (L.) and Steele, (I.M.), 1976. Amoeboid olivine aggregates in the Allende meteorite. Geochim. cosmochim. Acta 40, 149-55.CrossRefGoogle Scholar
Grossman, (L.), Ganapathy, (R.) and Davis, (A.M.), 1977. Trace elements in the Allende meteorite- Ill. Coarse-grained inclusions revisited. Geochim. cosmochim. Acta 41, 1647-64.CrossRefGoogle Scholar
Bandbury, (M.J.) and Williams, (I.P.), 1976. The dispersal of the solar nebula by the solar wind. The Observatory 96, 140-2.Google Scholar
Hanks, (T.C.) and Anderson, (D.L.), 1969. The early thermal bisterg of the Earth. Earth. Phys. Earth Planet. Int. 2, 19-29.CrossRefGoogle Scholar
Hapke, (B.), 1977. Interpretations of optical observations of Mercury and the Moon. Phys. Earth Planet. Int. 15, 264-74.CrossRefGoogle Scholar
Hards, (N.J.), 1976. The role of fluorine and chlorine in late-stage magmatic processes: an experimental study. Mineralogical Society Bulletin no. 30, 4 (Abstr.).Google Scholar
Hargraves, (R.B.), 1976. Precambrian geologic history. Science 193, 363-71.CrossRefGoogle ScholarPubMed
Hargraves, (R.B.), Collinson, (D.W.), Arvidson, (R.E.) andSpitzer, (C.R.), 1977b. The Viking magnetic Properties investigation: further results. Science 194, 1303-9.Google Scholar
Hargraves, (R.B.), Collinson, (D.W.), Arvidson, (R.E.) andSpitzer, (C.R.) 1977b. The Viking magnetic Properties experiment: primary mission results. J. Geophys. Res. 82, 4547-58.CrossRefGoogle Scholar
Harris, (A.W.), 1978. Satellite formation, II. Icarus 34, 128-45.CrossRefGoogle Scholar
Harris, (A.W.) and Kaula, (W.M.), 1975. A co-accretional model of satellite formation. Icarus 24, 516-24.CrossRefGoogle Scholar
Hartmann, (W.K.), 1972. moon and Planets. Tarrytown, New York (Bogden and Quigley).Google Scholar
Hartmann, (W.K.), 1974. Martian and terrestria] paleoclimatelogy: relevance of solar variability. Icarus 22, 301-ll.CrossRefGoogle Scholar
Hartmann, (W.K.) 1976. Planet formation: compositional mixing and lunar compositional anomalies. Icarus 27, 553-9.CrossRefGoogle Scholar
Hartmann, (W.K.), 1977. Relative crater production rates on planets. Icarus 3l, 260-76.CrossRefGoogle Scholar
Hartmann, (W.K.) 1978. Planet formation: mechanism of early growth. Icarus 33, 50-61.CrossRefGoogle Scholar
Hartmann, (W.K.) and Davis, (D.R.), 1975. Satellite-sized planetesimals and lunar origin. Icarus 24, 504-15.CrossRefGoogle Scholar
Haughton, (D.R.), Roeder, (P.L.) and Skinner, (B.G.), 1974. Solubility of sulfur in mafic magmas. Econ. Geol. 69, 451-67.CrossRefGoogle Scholar
Haymes, (R.C.), 1971. Introduction to Space Science. New York (John Wiley).Google Scholar
Hazen, (R.M.) and Prewitt, (C.T.), 1977. Effects of temperature and pressure on interatomic distances in oxygen-based minerals. Am. Mineral. 62, 309-15.Google Scholar
Head, (J.W.), Settle, (M.) and Stein, (R.S.), 1975. Volume of material ejected from major lunar basins and implications for the depth of excavation of lunar samples. Proc. Lunar Sci. Conf. 6th, 2805-29.Google Scholar
Herndon, (J.M.) and Herndon, (M.A.), 1977. Aluminum-26 as a planetoid heat source in the early solar system. Meteoritics 12, 459-65.CrossRefGoogle Scholar
Herndon, (J.M.), Rowe, (M.W.), Larson, (E.E.) and Watson, (D.E.), 1976. Thermo- magnetic analysis of meteorites, 3. C3 and C4 chondrites. Earth Planet. Sci. Lett. 29, 283-90.CrossRefGoogle Scholar
Hertogen, (J.), Janssens, (M.-J.), Takahasbi, (H.), Palme, (H.) and Anders, (E.), 1977. Lunar basins and craters: evidence for systematic compositional changes of bombarding population. Proc. Lunar Sci. Conf. 8th, 17-45.Google Scholar
Hervig, (R.L.), Smith, (J.V.) and Dawson, (J.B.), 1977. Minor element content of olivine and orthopyroxene in upper-mantle xenoliths. Second Int. Kimberlite Conf., Ext. Abstr., unpaged.Google Scholar
Herzog, (G.F.) and Cressy, (P.J., Jr.), 1977. Diogenite exposure ages. Geochim. cosmochim. Acta 41, 127-34.CrossRefGoogle Scholar
Hess, (H.H.) and Henderson, (E.P.), 1949. The Moore County meteorite: A further study with comment on its primordial environment. Am. Mineral. 34, 494-507.Google Scholar
Hewins, (R.H.) and Klein, (L.C.), 1978. Provenance of metal and melt rock textures in the Malvern howardite. Lunar and. Planetary Sci. IX, 503-5.Google Scholar
Hey, (M.H.) and Easten, (A.J.), 1967. The Khor Temiki meteorite. Geochim. cosmochim. Acta 31, 1789-92.CrossRefGoogle Scholar
Higucbi, (H.), Morgan, (J.W.), Ganapathy, (R.) and Anders, (E.), 1976. Chemical fractionations in meteorites - X. Ureilites. Geochim. cosmochim. Acta 40, 1563-71.CrossRefGoogle Scholar
Hofmann, (A.W.) and Hart, (S.R.), 1978. An assessment of local and regional isotopic equilibrium in the mantle. Earth Planet. Sci. Lett. 38, 44-62.CrossRefGoogle Scholar
Holland, (H.D.), 1965. Some applications of thermochemical data to problems of ore deposits. II. Mineral assemblages and the composition of ore-forming fluids. Econ. Geol. 60, 1101-66.CrossRefGoogle Scholar
Horowitz, (N.H.), Hobby, (G.L.) and Hubbard, (J.S.) 1977. Viking on Mars: the carbon assimilation experiments. J. Geophys. Reg. 82, 4659-62.CrossRefGoogle Scholar
Hostetler, (C.J.) and Drake, (M.J.), 1978. Quench temperatures of Moore County and other eucrites: residence time on eucrite parent body. Geochim. cosmochim. Acta 42, 517-22.CrossRefGoogle Scholar
Hoyle, (F.) and Wickramasinghe, (N.C.), 1968. Condensation of the planets. Nature 27, 415-8.CrossRefGoogle Scholar
Huang, (W.L.) Wyllie, (P.J.), 1974. Melting relations of muscovite with quartz and sanidine in the K2O-A12O3-SiO2-H2O system to 30 kilobars and an outline of paragonite melting relations. Amer. J. Sci. 274, 378-95.CrossRefGoogle Scholar
Huck, (F.O.) and 6 others, 1977. Spectrophotometric and color estimates of the Viking lander sites. J Geophys. Res. 82, 4401-11.CrossRefGoogle Scholar
Hughes, (D.W.), 1977. A comparison between the mass distribution indices of chondrules and cometary meteoroids. Earth Planet. Sci. Lett. 428-36.CrossRefGoogle Scholar
Hughes, (D.W.), 1978. A disaggregation and thin section analysis of the size and mass distribution of the chondrules in the Bjurböle and Chainpur meteorites. Earth Planet. Sci. Lett. 38, 391-400.CrossRefGoogle Scholar
Huguenin, (R.L.), 1976. Chemical weathering as a massive volatile sink. Icarus 28, 303-12.CrossRefGoogle Scholar
Hunten, (D.M.) 1973. The escape of light gases from planetary atmospheres. J. Atmos. Sci. 30, 1481-94.2.0.CO;2>CrossRefGoogle Scholar
Hunten, (D.M.), 1974. Aeronomy of the lower atmosphere of Mars. Rev Geophys. Space Phys. 12, 529-35.CrossRefGoogle Scholar
Hunten, (D.M.) and Donahue, (T.M.), 1976. Hydrogen loss from the terrestrial planets. Ann. Rev. Earth Planet. Sci. 4, 265-92.CrossRefGoogle Scholar
Hunten, (D.M.), McGill, (G.E.) and Nagy, (A.F.), 1977. Current knowledge of Venus. Space Sci Rev., 20, 265-82.CrossRefGoogle Scholar
Hutcheon, (I.D.), Steele, (I.M.) Smith, (J.V.) and Clayton, (R.N.), 1978. Ion microprobe, electron microprobe and cathodoluminescence data for Allende inclusions with emphasis on plagioclase chemistry. Proc. Ninth Lunar Planetary Sci. Conf., accepted.Google Scholar
Hutcheon, (I.D.), Steele, (I.M.), Solberg, (T.N.), Clayton, (R.N.) and Smith, (J.V.), 1977. Ion microprobe measurements of excess 26Mg in Allende inclusions. Meteoritics 12 262. Abstr.Google Scholar
Hutchison, (R.), 1972. The Angra dos Reis (stone) mineral assemblage and the genesis of stony meteorites. Nature (Phys. Sci.) 240, 58-9.Google Scholar
Hutchison, (R.) 1974. The formation of the Earth. Nature 250 556-8.CrossRefGoogle Scholar
Hutchison, (R.), 1976. Strontium and lead isotopic ratios, heterogeneous accretion of the Earth, and mantle plumes. Geochim. cosmochim. Acta 40, 482-5.CrossRefGoogle Scholar
Ikramuddin, (M.), Binz, (C.M.) and Lipschutz, (M.E.),1976. Thermal metamorphism of primitive meteorites - If. Ten trace elements in Abee enstatite chondrite heated at 400-1000°C. Geochim. cosmochim. Acta 40, 133-42.CrossRefGoogle Scholar
Ikramuddin, (M.), Binz, (C.M.) and Lipschutz, (M.E.), l977a. Thermal metamorphism of primitive meteorites - III. Ten trace elements in Krymka L3 chondrite heated to 400-1000°C. Geochim. cosmochim. Acta 41, 393-401.CrossRefGoogle Scholar
Ikramuddin, (M.), Matza, (S.) and Binz, (C.M.),1977b. Thermal metamorphism of primitive meteorites - V, Ten trace elements in Tieschitz H3 chondrite heated at 400-1000°C. Geochim. cosmochim. Acta 41, 1247-56.CrossRefGoogle Scholar
Ingersoll, (A.P.), 1970. Mars: occurrence of liquid water. Science 168, 972-3.Google ScholarPubMed
Ip, (W.-H.), 1978. Model consideration of the bombardment event of the asteroidal belt by the Planetesimals scattered from the Jupiter zone. Icarus 34, 117-27.CrossRefGoogle Scholar
Ito, (E.) and Matsui, (Y.), 1978. Synthesis and crystal-chemical characterization of MgSiO3 perovskite. Earth Planet. Sci. Lett. 38, 443-50.CrossRefGoogle Scholar
Jacobs, (J.A.), 1975. The Earth's Core. London (Academic Press).Google Scholar
Jain, (A.V.), Gordon, (R.B.) and Lipschutz, (M.E.), 1972. Hardness of kamacite and shock histories of El9 meteorites. J. Geophys. Res. 77, 6940-54.CrossRefGoogle Scholar
Jeanloz, (R.) and Ahrens, (T.J.), 1977a. Pyroxenes and olivines: structural implication of shock-wave data for high pressure phases, 439-61. In High-pressure Research, eds. Manghnami, (M.H.) and Akimoto, (S.), New York. Academic Press.CrossRefGoogle Scholar
Jeanloz, (R.) and Ahrens, (T.J.) and 1977b. Equation of state of CaO at high pressures. Eos 58, 1236 (Abstr.).Google Scholar
Jeffreys, (H.), 1947. The relation of cohesion to Roche's limit. Mon. Not. R. Astron Soc. 107, 260-2.CrossRefGoogle Scholar
Johnson, (J.E.), Scrymgour, (J.M.), Jarosewich, (E.) and Mason, (B.), 1977. Brachina meteorite - a chassignite from South Australia. Records South Australia Museum 17, 309-17.Google Scholar
Johnston, (D.H.) and Töksoz, (N.M.), 1977. Internal structure and properties of Mars. Icarus 32, 73-84.CrossRefGoogle Scholar
Johnston, (D.H.) MaGetchin, (T.R.) and Töksoz, (N.M.), 1974. J. Geophys. Res. 79, 3959-71.CrossRefGoogle Scholar
Jones, (K.L.), 1974. Evidence for a, episode of crater obliteration intermediate in Martian history. J. Geophys. Res. 79, 3917-31.CrossRefGoogle Scholar
Kallemeyn, (G.W.) and Wasson, (J.T.), 1977. The Bencubbin meteorite. Meteoritics 12, 270-1. (Abstr.).Google Scholar
Kaula, (W.M.). 1968. An Introduction to Planetary Physics: the Terrestrial Planets. New York (John Wiley).Google Scholar
Kaula, (W.M.), 1971. Dynamical aspects of lunar origin. Rev. Geophys. Space Phys. 9, 217-38.CrossRefGoogle Scholar
Kaula, (W.M.), 1975. The seven ages of a planet. Icarus 26, 1-15.CrossRefGoogle Scholar
Kaula, (W.M.), 1976. Comments on the origin of Mercury. Icarus 28, 429-33.CrossRefGoogle Scholar
Kaula, (W.M.), 1977a. On the origin of the moon, with emphasis on bulk composition. Proc. Lunar Sci. Conf. 8th, 321-31.Google Scholar
Kaula, (W.M.), 1977b. Mechanical Processes affecting differentiation of protolunar material. NASA SP-370, 805-13.Google Scholar
Kaula, (W.M.) and Harris, (A.W.), 1973. Dynamically plausible hypotheses of lunar origin. Nature 245, 367-9.CrossRefGoogle Scholar
Kaula, (W.M.) and Harris, (A.W.), 1975. Dynamics of lunar origin and orbital evolution. Rev. Geohys. Space Phys. 13, 363-71.Google Scholar
Kay, (R.W.) and Hubbard, (N.J.), 1978. Trace elements in ocean ridge basalts. Earth Planet. Sci. Lett. 38, 95-116.CrossRefGoogle Scholar
Keays, (R.R.), Ganapathy, (R.) and Anders, (A.), 1971. Chemical fractionations in meteorites - IV Abundances of fourteen trace elements in L-chondrites; implications for cosmothermometry. Geochim. cosmochim. Acta 35, 337-63.CrossRefGoogle Scholar
Keil, (K.), 1968. Mineralogical and chemical relationships among enstatite chondrites. J Geophys. Res. 73, 6945-76.CrossRefGoogle Scholar
Keil, (K.), 1969a. Meteorite composition, 78-115. In Handbook of Geoohemistry, Vo]. 1, ed. Wedepohl, (K.H.). Berlin (Springer).CrossRefGoogle Scholar
Keil, (K.) 1969b. Titanium distribution in enstatite chondrites and achondrites and its bearing on their origin. Earth Planet. Sci. Lett. 7, 243-8.CrossRefGoogle Scholar
Keil, (K.) and Fredriksson, (K.) 1963. Electron microprobe analysis of some rare minerals in the Norton County achondrite. Geochim. cosmochim. Acta 27, 939-47.CrossRefGoogle Scholar
Kelly, (W.R) and Larimer, (J.W.), 1977. Chemical fractionations in meteorites - VIII. Iron meteorites and the cosmochimical history of the metal phase. Geochim. cosmochim. Acta 41, 93-111.CrossRefGoogle Scholar
Kerridge, (J.F.), 1976. Major element comgesition of phyllosilicates in the Orgueil carbonaceous meteorite. Earth Planet. Sci. Lett. 29, 194-200.CrossRefGoogle Scholar
Kerridge, (J.F.), 1977a. Iron: whence it came, where it went. Space Sci. Rev. 20, 3-68.CrossRefGoogle Scholar
Kerridge, (J.F.), 1977b. Correlation between nickel and sulfur abundances in Orgueil phyllosilicates. Geochim. cosmochim. Acta 41, 1163-4.CrossRefGoogle Scholar
Kerridge, (J.F.) and MacDougall, (J.D.), 1976. Mafic silicates in the Orgueil carbonaceous meteorite. Earth Planet. Sci. Lett 29, 341-8.CrossRefGoogle Scholar
Kerridge, (J.F.) and Kieffer, (S.W.), 1977. A constraint on impact theories of chondrule formation. Earth Planet. Sci. Lett. 35, 35-42.CrossRefGoogle Scholar
Kesson, (S.E.) and Ringwood, (A.E.), 1977. Further limits on the bulk composition of the moon. Proc. Lunar Sci. Conf. 8th, 411-31.Google Scholar
Kieffer, (H.H.), Chase, (S.C., Jr.), Martin, (T.Z.), Miner, (E.D.) and Palluconi, (F.D.), l977a. Martian northern pole summer temperatures: dirty water ice. Science 194, 1341-4.CrossRefGoogle Scholar
Kieffer, (H.H.), Martin, (T.Z.), Peterfreund, (A.R.), Jakosky, (B.M.), Miner, (E.D.) and Palluconi, (F.D.), l977b. Thermal and albedo mapping of Mars during the Viking primary mission. J Geophys. Res 82, 4249-92.CrossRefGoogle Scholar
Kim, (K.-T.) and Burley, (B.J.), 1971. Phase equilibria in the system NaAlSi3O8-NaAlSiO4-H2O up to 15kb; a theoretical discussion. Can. J. Earth Sci. 8, 549-57.CrossRefGoogle Scholar
Kimura, (K.) Lewis, (R.S.) and Anders, (A.), 1974. Distribution of gold and rhenium between nickel-iron and silicate melts: implications for the abundance of siderophile elements on the Earth and Moon. Geochim. cosmochim. Acta 38, 683-701.CrossRefGoogle Scholar
King, (E.A.), 1976. Space Geology. New York (John Wiley).Google Scholar
Kolomeitseva, L.N., 1975. On the conditions for equilibrium in pallasites. Meteoritika 34, 52-6.Google Scholar
Kong, (T.Y.) amd Mcelory, (M.B.), 1977. THe global distribution of ozone on Mars. Planet. Space Sci. 25, 839-57.CrossRefGoogle Scholar
Kracher, (A.), Kurat, (G.) and Buchwald, (V.F.), 1977. Cape York: The extraordinary mineralogy of an ordinary iron meteorite and its implication for the genesis of IIIAB irons. Geochem. J. 11, 207-17.CrossRefGoogle Scholar
Kumar, (S.), 1976. Mercury's atmosphere: a perspective after Mariner l0. Icarus 28, 579-91.CrossRefGoogle Scholar
Kurat, (G.), 1967a. Zur Entstehung der Chondren. Geochim. cosmochim. Acta 31, 491-D02.CrossRefGoogle Scholar
Kurat, (G.), 1967b. Einige Chondren aus dem Mateoriten yon Mezö-Madaras. Geochim. cosmochim. Acta 31, ]843-57.CrossRefGoogle Scholar
Kurat, (G.), Hoinkes, (G.) and Fredriksson, (K.), 1975. Zoned Ca-Al-rich chondrule in Bali: new evidence against the primordial condensation model. Earth Planet. Sci. Lett, 26, 140-4.CrossRefGoogle Scholar
Lange, (D.E.) and Larimer, (J.W.). 1973. Chondrules: an origin by impacts between dust grains. Science 182, 920-2.CrossRefGoogle ScholarPubMed
Langseth, (M.G.), Keihm, (S.J.) and Peters, (K.), 1976. Revised lunar heat-flow values. Proc. Lunar Sci. Conf. 7th, 3143-71.Google Scholar
Larimer, (J.W.), 1971. Composition of the earth: chondritic or achondritic? Geochim. cosmochim. Acta 35, 769-86.CrossRefGoogle Scholar
Larimer, (J.W.), 1975. The effect of C/O ratio on the condensation of planetary material. Geochim. cosmochim. Acta 39, 389-93.CrossRefGoogle Scholar
Larimer, (J.W.), and Buseck, (P.R.), 1974. Equilibration temperatures in enstatite chondrites. Geochim. cosmochim. Acta 38, 471-77.CrossRefGoogle Scholar
Larson, (H.P.), Fink, (U.), Treffers, (R.R.) and Gautier, (T.N., III), 1976. The infrared spectrum of astoid 433 Eros. Icarus 28, 95-103.CrossRefGoogle Scholar
Lattimer, (J.M.), Schramm, (D.N.) and Grossman, (L.), 1978. Condensation in supernova ejecta and isotopic anomalies in meteorites. Astrophys. J. 219, 230-49.CrossRefGoogle Scholar
Laul, (J.C.), Keays, (R.R.), Ganapathy, (R.), Anders, (E.) and Morgan, (J.W.), 1972. Chemical fractionations in meteorites - V. Volatile and siderophile elements in achondrites and ocean ridge basalts. Geochim. cosmochim. Acta 36, 329-45.CrossRefGoogle Scholar
Lebofsky, (L.A.), 1978. Asteroid l Ceres: evidence for water of hydration. Mon. Not. R. Astron. Soc. 182, 17P-21P.CrossRefGoogle Scholar
Lee, (T.), Papanastassiou, (D.A.) and Wasserburg, (G.J.), 1977a. Aluminum-26 in the early solar system: fossil or fuel? Astrophs.J. 211, L107-10.CrossRefGoogle Scholar
Lee, (T.), Papanastassiou, (D.A.) and Wasserburg, (G.J.), 1977b. Mg and Ca isotopic study of individual microscopic crystals from the Allende meteorite by the direct loading technique. Geochim. cosmochim. Acta 41, 1473-85.CrossRefGoogle Scholar
Levin, (B.Yu.) and Mayeva, (S.V.), 1977. Riddles about the origin and thermal history of the Moon. NASA SP-370.Google Scholar
Levine, (J.S.), 1976. A new estimate of volatile outgassing on Mars. Icarus 28, 165-9.CrossRefGoogle Scholar
Lewis, (J.S.), 1970. Venus: Atmospheric and lithospheric composition. Earth Planet. Sci. Lett 10, 73-80.CrossRefGoogle Scholar
Lewis, (J.S.), 1972a. Metal/silicate fractionation in the solar system. Earth Planet. Sci. Lett. 15, 286-90.CrossRefGoogle Scholar
Lewis, (J.S.), 1972b. Low temperature condensation from the solar nebula. Icarus 16, 241-52.CrossRefGoogle Scholar
Lewis, (J.S.) 1974a. The temperature gradient in the solar nebula. Science 186, 440-3.CrossRefGoogle ScholarPubMed
Lewis, (J.S.) 1974b. Volatile element influx on Venus from cometary Impacts. Earth Planet. Sci. Lett. 22, 239-44.CrossRefGoogle Scholar
Lewis, (R.S.), Srinivasan, (B.) and Anders, (E.), 1975. Host phase of a strange xenon component in Allende. Science 190, 1251-62.CrossRefGoogle Scholar
Leyreloup, (A.), Dupuy, (C.) and Andriambololona, (R.), 1977. Catazonal xenoliths in French neogene volcanic rocks: constitution of the lower crust. Contr. Mineral. Petrol. 62, 283-300.CrossRefGoogle Scholar
Liebermann, (R.C.), Jones, (L.E.A.) and Ringwood, (A.E.), 1977. Elasticity of aluminate, titanate, stannate and germanate compounds with the perovskite structure. Phys. Earth Planet. Int. 14 165-78.CrossRefGoogle Scholar
Lin, (L.S.), Goldstein, (J.I.) and Williams, (D.B.), 1977. Analytical electron microscopy study of the plessite structure in the Carlton iron meteorite. Geochim. cosmochim. Acta 41, 1861-74.CrossRefGoogle Scholar
Lindsley, (D.H.) and Dixon, (S.A.), 1976. Diopside-enstatite equilibria at 850° to 1400° 5 to 35kb. Am. J. sci. 276 1285-1301.CrossRefGoogle Scholar
Liu, (L.), 1974. Silicate perovskite from phase transformations of pyrope-garnet at high pressure and temperature. Geophys. Res. Lett. l, 277-80.CrossRefGoogle Scholar
Liu, (L.), 1975. Post-oxide phases of forsterite and enstatite. Geophys. Res. Lett. 2, 417-9.CrossRefGoogle Scholar
Liu, (L.), 1976. Orthorhombic perovskite phases observed in olivine, pyroxene, and garnet at high pressures and temperatures. Phys. Earth Planet. Int. 11 289-98.CrossRefGoogle Scholar
Liu, (L.), 1977. The system enstatite-pyrope at high pressures and temperatures and the mineralogy of the earth's mantle. Earth Planet. Sci. Lett. 36, 237-45.CrossRefGoogle Scholar
Liu, (L.) and Ringwood, (A.E.), 1975. Synthesis of perovskite type polymorph of CaSiO3 . Earth Planet. Sci. Lett. 28, 209-11.CrossRefGoogle Scholar
Liu, (S.C.) and Donahue, (T.M.), 1976. The regulation of hydrogen and oxygen escape from Mars. Icarus 28, 231-46.CrossRefGoogle Scholar
Longhi, (J.), 1977. Magma oceanography 2: chemical evolution and crustal formation. Proc. Lunar Sci. Conf. 8th, 601-21.Google Scholar
Lorin, (d.C.), Shimizu, (N.), Lévy, (M.C.) and Allègre, (C.J.), 1977. The Mg isotope anomaly in carbonaceous chondrites: an ion-probe study. Metaoritics 12, 299-300 (Abstr.).Google Scholar
Lovering, (J.F.), 1975. The Moama eucrite - a pyroxene-plagioclase adcumulate. Metaoritics 10, 101-14.CrossRefGoogle Scholar
Lovering, (J.F.) and White, (A.J.R.), 1964. The significance of primary scapolite in granulitic inclusions from deep-seated pipes. J. Petrol. 5, 195-218.CrossRefGoogle Scholar
Lowe, (D.R.) and Knauth, (L.P.), 1977. Sedimenmplogy of the Onverwacht group (3.4 billion years), Transvaal, South Africa, and its bearing on the characteristics and evolution of the early earth. J. Geol. 85, 699-723.CrossRefGoogle Scholar
Lowman, (P.D., Jr.), 1976. Crustal-evolution in terrestrial planets: implications for the origin of continents. J. Geol. 84, 1-26.CrossRefGoogle Scholar
Maaløe, (S.) and Aoki, (K.), 1977. The major element composition of the upper mantle estimated from the composition of lherzolites. Contr. Mineral. Petrol. 63, 161-73.CrossRefGoogle Scholar
Macdougall, (J.D.) and Kothari, (B.K.), 1976. Formation chronology for C2 meteorites. Earth Planet. Sci. Lett. 33, 36-44.CrossRefGoogle Scholar
Mactean, (W.H.) and Shirrazaki, (H.), 1976. The partition of Co,Ni,Cu, and Zn between sulfide and silicate liquids. Econ. Geol. 71, 1049-57.Google Scholar
Malin, (M.C.), 1974. Salt weathering on Mars. J. Geophys. Res. 79, 3888-94.CrossRefGoogle Scholar
Malinowsky, (I.Yu.) and Doroshev, (A.M.), 1977. Evaluation of P-T conditions of diamond formation with reference to chrome-hearing garnet stability. Second Int. Kimberlite Conf., Ext. Abstr., unpaged.Google Scholar
Manuel, (O.K.) and Sabu, (D.D.), 1975. Elemental and isotopic inhomogeneities in noble gases: the case for local synthesis of the chemical elements. Trans. Missouri Acad. Sci. 9, 104-22.Google Scholar
Manuel, (O.K.), Hennecke, (E.W.) and Sabu, (D.D.), 1972. Xenon in carbonaceous chondrites. Nature (Phys. Sci.) 240, 99-101.CrossRefGoogle Scholar
Mao, (H.K.) and Bell, (P.M.), 1977a. Generation of static pressure to 1.5 Mbar. Carnegie Inst. Washington Yearb. 76, 644-50.Google Scholar
Mao, (H.K.) and Bell, (P.M.), 1977b. Disproportionation equilibrium in iron bearing systems at pressures above 100kbar with applications to chemistry of the Earth's mantle. In Energetics of Geological Processes, ed. Saxena, (S.) and Bhattacharji, (S.), Heidelberg (Springer).Google Scholar
Martin, (P.M.) and Mason, (B.), 1974. Major and trace elements in the Allende meteorite. Nature 249, 333-4.CrossRefGoogle Scholar
Mason, (B.), 1962. Meteorites. New York (John Wiley).Google Scholar
Mason, (B.), 1963a. Olivine composition in chondrites. Geochim. cosmochim. Acta. 27, 1011-23.CrossRefGoogle Scholar
Mason, (B.) 1963b. The hypersthene achondrites. Amer. Mussum Novitates 2155, 1-13.Google Scholar
Mason, (B.), 1966. The enstatite chondrites. Geochim. cosmochim. Acta 30, 23-40.CrossRefGoogle Scholar
Mason, (B.), 1971a. The carbonaceous chondrites - a selective review. Meteoritics 6, 59-70.CrossRefGoogle Scholar
Mason, (B.), 1971b ed. of Handbook of Elemental Abundances in Meteorites. New York (Gordon and Breach).Google Scholar
Mason, (B.) and Jarosewich, (E.), 1973. The Barea, Dyarrl Island, and Emery meteorites review of the mesosiderites. Mineral. Mag. 39, 204-15.CrossRefGoogle Scholar
Mason, (B.), Nelen, (J.A.), Muir, (P.) and Taylor, (S.R.), 1975. The composition of the Chassigny meteorite. Meteoritics 11, 21-7.CrossRefGoogle Scholar
Massey, (H.), Brown, (G.M.), Eglinton, (G.), Runcorn, (S.K.) and Urey, (H.C.), 1977. eds. of The Moon: a New Appraisal from Space Missions and Laboratory Aanlyses. London (Royal Society).Google Scholar
Masursky, (H.) Boyce, (J.M.), Dial, (A.L.), Schaber, (G.G.) and Strobell, (M.E.), 1977. Classification and time of formation of Martian channels based on Viking data. J. Geophys. Res. 82, 4016-38.CrossRefGoogle Scholar
Motza, (S.D.) and Lipschutz, (M.E.), 1977. Volatile/mobile trace elements in Karoonda (C4) chondrite. Geochim. cosmochim. Acta 41 1398-1401.Google Scholar
McCallum, (M.E.) and Eggler D.H., 1976. Diamonds in an upper mantle peridotite nodule from kimberlite in southern Wyoming. Science 192, 253-6.CrossRefGoogle Scholar
McCarthy, (T.S.), Erlank, (A.J.) and Willis, (J.P.), 1973. On the origin of eucrites and diogenites. Earth Planet. Sci. Lett. 18, 433-42.CrossRefGoogle Scholar
McCord, (T.B.) and Chapman, (C.R.), 1975. Asteroids: spectral reflectance and color characteristics. Astrophys. J. 195, 553-62 and 197, 781-90.CrossRefGoogle Scholar
McEtroy, (M.B.) and Kong, (T.Y.), 1976. Oxidation of the Martian Surface: constraints due to chemical processes in the atmosphere. Geophys. Res. Lett. 3, 569-72.CrossRefGoogle Scholar
McEtroy, (M.B.) and Kong, (T.Y.) and Yung, (Y.L.), 1977a. Photochemistry and evolution of Mars' atmosphere: a Viking perspective. J. Geophys. Re∼. 82, 4379-88.CrossRefGoogle Scholar
McEtroy, (M.B.), Yung, (Y.L.) and Nier, (A.O.), 1977b. Isotopic composition of nitrogen: implications for the past history of Mars’ atmosphere. Science 194, 70-2.CrossRefGoogle Scholar
McGetchin, (T.K.) and Smyth, (J.R.), 1978. The mantle of Mars: some possible geological implications of its high density. Icarus 34, 512-36.CrossRefGoogle Scholar
McKenzie, (D.P.) and Weiss, (N.), 1975. Speculations on the thermal and tectonic history of the Earth. Geophys. J. R. Astron. Soc. 42, l31-74.Google Scholar
McQueen, (R.G.) and Marsh, (S.P.), 1966. Shock-wave compression of iron-nickel alloys and the Earth's core. J. Geophys. Res. 71, 1751-6. Discussion by Takahashi, T. and Bassett, W.A. 71, 1757.CrossRefGoogle Scholar
McSween, (H.Y., Jr.), 1977a. On the nature and origin of isolated olivine grains in carbonaceous chondrites. Geochim. cosmochim. Acta 41, 411-8.CrossRefGoogle Scholar
McSween, (H.Y., Jr.), 1977b. Carbonaceous chondrites of the Ornans type: a metamorphic sequence. Geochim. cosmochim. Acta 41, 477-91.CrossRefGoogle Scholar
McSween, (H.Y., Jr.), 1977c. Petrographic variations among carbonaceous chondrites of the Vigarano type. Geochim. cosmochim. Acta 41, 1777-90.CrossRefGoogle Scholar
McSween, (H.Y., Jr.), 1977d. Chemical and petrographic constraints on the origin of chondrules and inclusions in carbonaceous chondrites. Geochim. cosmochim. Acta 41, 1843-50.CrossRefGoogle Scholar
McSween, (H.Y., Jr.) and Richardon, (S.M.), 1977. The composition of carbonaceous chondrite matrix. Geochim. cosmochim. Acta 41, 1145-61.CrossRefGoogle Scholar
McSween, (H.Y., Jr.) and Stolper, (E.), 1978. Shergottite meteorites, I: Minerology and petrography. Lunar and. Planetary Sci. IX, 732-4.Google Scholar
Meyer, (C., Jr.), 1971. An experimental approach to circumstellar condensation. Geochim. cosmochim. Acta 35 551-65.CrossRefGoogle Scholar
Meyer, (C., Jr.), 1977. Petrology, mineralogy and chemistry of KREEP basalt. Phys. Chem. Earth 10, 239-60.Google Scholar
Meyer, (H.O.A.), 1977. Mineralogy of the upper mantle: a review of the minerals in mantle xenoliths from kimberlite. Earth-Science Reviews 13, 251-81.CrossRefGoogle Scholar
Miller, (S.L.) and Smythe, (W.D.), 1970. Carbon dioxide clathrate in the Martian ice cap. Science 170, 531-3.CrossRefGoogle ScholarPubMed
Milton, (D.J.), 1974. Carbon dioxide hydrate and floods on Mars. Science 183, 654-6.CrossRefGoogle ScholarPubMed
Mitler, (H.E.), 1975. Formation of an iron-poor moon by partial capture, or: yet another exotic theory of lunar origin. Icarus 24, 256-68.CrossRefGoogle Scholar
Miyake, (G.T.) and Goldstein, (J.I.), 1974. Nedagolla, a remelted iron meteorite. Geochim. cosmochim. Acta 38, 747-55.CrossRefGoogle Scholar
Miyamoto, (M.) and Takeda, (H.), 1977. Evaluation of a crust model of eucrites from the width of exsolved pyroxene. Geochemical J. 11, 161-9.CrossRefGoogle Scholar
Miyamoto, (M.) and Takeda, (H.) and Takano, (Y.), 1975. Crystallographic studies of a bronzite in the Johnstown achondrite. Fortschr. Mineral. 52, 389-97.Google Scholar
Modreski, (P.J.) and Boettcher, (A.L.) 1972. The stability of phlogopite + enstatite at high pressures: a model for micas in the interior of the earth. Am. J. Sci. 272, 852-69.CrossRefGoogle Scholar
Moorbath, (S.), 1975. Evolution of Precambrian crust from strontium isotopic evidence. Nature 254, 395-9.CrossRefGoogle Scholar
Moore, (H.J.), Hodges, (C.A.) and Scott, (D.H.), 1974. Multiringed basins-illustrated by Orientale and associated features. Proc. Fifth Lunar Sci. Conf., p. 71-100.Google Scholar
Morgan, (J.W.) and Lovering, (J.F.), 1973. Uranium and thorium in achondrites. Geochim. cosmochim. Acta 37, 1697-1707.CrossRefGoogle Scholar
Morgan, (J.W.), Higuchi, (H.), Takahashi, (H.) and Hertogen, (J.) 1978a. A “chondritic” eucrite parent body: inference from trace elements. Geochim. cosmochim. Acta 42. 27-38.CrossRefGoogle Scholar
Morgan, (J.W.), Hertogen, (J.) and Anders, (E.), 1978b. The Moon: composition determined by nebular processes. The Moon, submitted.CrossRefGoogle Scholar
Moroz, (V.I.), 1976. The atmosphere of Mars. Space Sci. Rev. 19, 763-843.CrossRefGoogle Scholar
Merrison, (D.), 1977. Asteroid sizes and albedos. Icarus 31, 185-220.Google Scholar
Merrison, (D.) and Cruikshank, (D.P.), 1974. Physical properties of the natural satellites. Space Sci. Rev. 15, 641-739.Google Scholar
Mueller, (R.F.), 1963. Chemistry and petrology of Venus: preliminary deductions. Science 141, 1046-7.CrossRefGoogle ScholarPubMed
Mueller, (R.F.), 1964. A chemical model for the lower atmosphere of Venus. Icarus 3, 285-95.CrossRefGoogle Scholar
Mueller, (R.F.), 1965. Stability of sulfur compounds on Venus. Icarus 4. 506-122CrossRefGoogle Scholar
Mueller, (R.F.), 1968. Sources of HCl and HF in the atmosphere of Venus. Nature 220, 55-7.CrossRefGoogle Scholar
Mueller, (R.F.), 1969. Effect of temperature on the strength and composition of the upper lithosphere of Venus. Nature 224 354-6.CrossRefGoogle Scholar
Mueller, (R.F.), 1970. Dehydrogenation of Venus. Nature 227, 363-5.CrossRefGoogle Scholar
Mueller, (R.F.) and Kridelbaugh, (S.J.), 1973. Kinetics of CO2 production on Venus. Icarus 19, 531-41.CrossRefGoogle Scholar
Munson, (R.A.) and Sheppard, (R.A.), 1974. Natural zeolites: their properties occurrences and uses. Minerals Sci. Engng. 6, 19-34.Google Scholar
Murray, (B.C.), Strom, (R.G.), Trask, (N.J.) and Gault, (D.E.), 1975. Surface history of Mercury: implications for terrestrial planets. J Geophys. Res. 80, 2508-14.Google Scholar
Murthy, (V.R.), 1976. Composition of the core and the early chemical history of the Earth, 21-31. In Windley, (B.F.), ed., The Early History of the Earth, London, (John Wiley).Google Scholar
Murthy, (V.R.) and Hall, (H.T.), 1970. The chemical composition of the Earth's core: possibility of sulphur in the core. Phys. Earth Planet. Int. 2, 276-82.CrossRefGoogle Scholar
Murthy, (V.R.) and Hall, (H.T.), 1972. The origin and chemical composition of the Earth's core. Phys. Earth Planet. Int. 6, 125-30.Google Scholar
Mutch, (T.A.) and Saunders, (R.S.), 1976. The geologic development of Mars: a review. Space Sci. Rev. 19, 3-57.CrossRefGoogle Scholar
Mutch, (T.A.), Arvidson, (R.E.), Head, (J.W.,III), Jones, (K.L.) and Saunders, (R.S.), 1976. The Geology of Mars. Princeton, N.J. (Princeton Univ.).Google Scholar
Mutch, (T.A.) and 9 others, 1977a. The surface of Mars: the view from the Viking l Lander. Science 193, 791-801.CrossRefGoogle Scholar
Mutch, (T.A.) and 24 others, 1977b. The surface of Mars: the view from the Viking 2 Lander. Science 194, 1277-83.Google Scholar
Mutch, (T.A.), Arvidson, (M.E.), Binder, (A.B.), Guinness, (E.A.) and Morris, (E.C.), 1977c. The geology of the Viking Lander 2 site. J. Geophys. Res. 82, 4452-67.Google Scholar
Mysen, (B.O.), 1977. The solubility of H2O and CO2 under predicted magma genesis conditions and some petrological and geophysical implications. Rev. Geophys Space Phys. 15, 351-61.CrossRefGoogle Scholar
Mysen, (B.O.) and Boettcher, (A.L.), 1975. Melting of a hydrous mantle: I. Phase relations of natural peridotite at high pressures and temperatures with controlled activities of water, carbon dioxide and hydrogen. J Petrol. 16, 520-48.CrossRefGoogle Scholar
Nagy, (B.), 1975. Carbonaceous Meteorites. Amsterdam (Elsevier).Google Scholar
Naldrett, (A.J.), 1969. A portion of the system Fe-S-O between 900 and 1080°C and its application to sulfide ore magmas. J. Petrol. 10, 171-201.CrossRefGoogle Scholar
Mash, (C.R.), 1972. Primary anhydrite in Precambrian gneisses from the Swakopmund district, South West Africa. Contr. Mineral. Petrol. 36, 27-32.Google Scholar
Nehru, (C.E.), Hewins, (H.H.), Garcia, (D.J.), Harlow, (G.E.), Prinz, (M.), 1978. Mineralogy and petrology of the Emery mesosiderite. Lunar and. Planetary Sci. IX, 799-801.Google Scholar
Ness, (N.F.), Behannon, (K.W.) and Lepping, (R.P.), 1976. Observations of Mercury's magnetic field. Icarus 28, 479-08.CrossRefGoogle Scholar
Neukum, (G.) and Wise, (D.U.), 1976. Mars: a standard crater curve and possible new time scale. Science 194, 1381-7.CrossRefGoogle ScholarPubMed
Newburn, (R.L., Jr.) and Gulkis, (S.), 1973. A survey of the outer planets Jupiter, Saturn, Uranus, Neptune, Pluto and their satellites. Space Sci. Rev. 14, 179-271.CrossRefGoogle Scholar
Newsom, (H.E.) and Drake, (M.J.) 1977. Metal fractionation patterns in the BENCUBBIN meteorite. Meteoritics 12, 326 (Abstr.).Google Scholar
Newton, (R.C.) and Goldsmith, (J.R.), 1975. Stability of the scapolite meionite (3CaAl2Si2O8.CaCO3) at high pressures, and storage of CO2 in the deep crust. Contr. Mineral. Petrol. 49, 49-62.CrossRefGoogle Scholar
Nier, (A.O.), McElroy, (M.B.) and Yung, (Y.L.), 1977. Isotopic composition of the Martian atmosphere. Science 194, 68-70.Google Scholar
Noonan, (A.F.) and Nelen, (J.A.), 1976. A petrographic and mineral chemistry study of the Weston, Connecticut, chondrite. Meteoritics 11, 1ll-30.CrossRefGoogle Scholar
Nordlie, (B.E.), 1977. The composition of the magmatic gas of Kilauea and its behavior in the near surface environment, Amer. J. Sci. 271, 417-63.CrossRefGoogle Scholar
Okal, (E.A.) and Anderson, (D.L.), 1978. Theoretical models for Mars and their seismic properties. Icarus 33, 514-28.CrossRefGoogle Scholar
O'Keefe, (J.D.) and Ahrens, (T.J.), 1975. Shock effects from a large impact on the moon. Proc. Lunar Sci. Conf. 6th, 2831-44.Google Scholar
O'Keefe, (J.D.) and Ahrens, (T.J.), 1977a. Impact-induced energy partitioning, melting, and vaporization on terrestrial planets. Proc. Lunar Sci. Conf. 8th, 3357-74.Google Scholar
O'Keefe, (J.D.) and Ahrens, (T.J.), 1977b. Meteorite impact ejecta: dependence of mass and energy lost on planetary escape velocity. Science 198, 1249-51.CrossRefGoogle ScholarPubMed
O'Leary, (B.), 1977. Mining the Apollo and Amor asteroids. Science 197. 363-6.CrossRefGoogle ScholarPubMed
Olsen, (E.) and Fredriksson, (K.), 1966. Phosphates in iron and pallasite meteorites. Geochim. cosmochim. Acta 30, 459-70.CrossRefGoogle Scholar
Olsen, (E.),and Jarosewich, (E.), 1971. Chondrules: first occurrence in an iron meteorite. Science 174, 583-5.CrossRefGoogle Scholar
Olsen, (E.), Grossman, (L.) and Davis, (A.), 1977. Origin of isolated olivine grains in the Murchison C2 meteorite. Meteoritics 12, 336 (Abstr.). Paper accepted by Earth Planet. Sci. Lett. (1978) from Olsen and Grossman.Google Scholar
Olsen, (E.), Bunch, (T.E.), Jarosewich, (E.), Noonan, (A.F.) and Huss, (G.I.), 1977 Happy Canyon: a new type of enstatite achondrite. Meteoritics 12, 109-23.CrossRefGoogle Scholar
O'Neill, (G.K.), 1974. The colonization of space. Physics Today 27, 32-40.CrossRefGoogle Scholar
O'Neill, (G.K.), 1975. Space colonies and energy supply to the Earth. Science 190, 943-7.CrossRefGoogle Scholar
O'Nions, (R.K.) and Pankhurst, (R.J.), 1978. Early Archaean rocks and geochemical evolution of the earth's crust. Earth Planet. Sci. Lett. 38, 211-36.CrossRefGoogle Scholar
Öpik, (E.J.), 1972. Conmments on lunar origin. Irish Astron. J. 10 190-238.Google Scholar
Öpik, (E.J.), 1976. Interplanetary Encounters. Amsterdam (Elsevier).Google Scholar
Orowan, (E.), 1969. Density of the Moon and nucleation of the planets. Nature 222, 867.CrossRefGoogle Scholar
Orville, (P.), 1975. Crust-atmosphere interactions. In The Atmosphere of Venus, ed. Hansen, (J.E.). NASA SP-382.Google Scholar
Osborn, (T.W.), Smith, (R.H.) and Schmitt, (R.A.), 1973. Elemental composition of individual chondrules from ordinary chondrites. Geochim. cosmochim. Acta 37, 1909-42.CrossRefGoogle Scholar
Owen, (T.), 1976. Volatile inventories on Mars. Icarus 28, 171-7.CrossRefGoogle Scholar
Owen, (T.) and Biemann, (K.), 1977. Composition of the atmosphere at the Surface of Mars: detection of argon-36 and preliminary analysis. Science 193. 801-3.CrossRefGoogle Scholar
Owen, (T.) and 5 others, 1977. The composition of the atmosphere at the surface of Mars. J. Gemphys. Res. 82. 4635-9.Google Scholar
Oyama, (V.I.) and Berdahl, (B.J.), 1977. The Viking gas exchange experiment results from Chryse and Utopia surface samples. J Geophys. Res. 82, 4669-76.Google Scholar
Palm, (A.), 1969. The evolution of Venus’ atmosphere. Planet. Space Sci. 17, 1021-8.CrossRefGoogle Scholar
Papike, (J.J.) and Vaniman, (D.T.), 1978. The state of the mare basalt suite after Luna 24. Special Soviet Volume on Luna 24, in press.Google Scholar
Papike, (J.J.), Hodges, (F.N.), Bence, (A.E.), Cameron, (M.) and Rhodes, (J.M.), 1976. Mare basalts: crystal chemistry, mineralogy, and petrology. Rev. Geophys. Space Phys. 14, 475-540.CrossRefGoogle Scholar
Paul, (D.K.), Buckley, (F.) and Nixon, (P.H.), 1976. Fluorine and chlorine geochemistry of kimberlites, chem. Geol. 17, 125-33.CrossRefGoogle Scholar
Peale, (S.J.), Schubert, (G.) and Lingenfetter, (R.E.), 1975. Origin of Martian channels: clathrates and water. Science 187, 273-4.CrossRefGoogle ScholarPubMed
Pellas, (P.), Bourot-Denise, (M.) and Storzer, (D.) 1978. Shaw revisited: cooling history and U-Pu distribution in phosphates. Lunar and. Planetary Sci. IX, 879-81.Google Scholar
Pepin, (R.O.) and Phinney, (D.), 1976. The formation interval of the Earth. Lunar Sci. VII, 682-4.Google Scholar
Philpotts, (J.A.) and Schnetzler, (C.C.), 1970. Apollo ll lunar samples: K,Rb,Sr,Ba and rare-earth concentrations in some rocks and separated phases. Proc. Apollo ll Lunar Sci. Conf. 2, 1471-86.Google Scholar
Phinney, (W.C.), Warner, (J.L.) and Simonds, (C.H.), 1977. Lunar highland rock types: their implications for impact-induced fractionation. NASA SP-310.Google Scholar
Pieters, (C.), Gaffey, (M.J.), Chapman, (C.R.) and McCord, (T.B.), l976. Spectrmphotometry (0.33 to 1.07μm) of 433 Eros and compositional implications. Icarus 28, 105-15.CrossRefGoogle Scholar
Pollack, (J.B.) and 6 others, 1977. Properties of aerosols in the Martian atmosphere, as inferred from Viking lander imaging data. J Geophys. Res. 82, 4479-96.CrossRefGoogle Scholar
Pollack, (S.S.), 1966. Disordered orthopyroxene in meteorites. Am.Mineral. 51, 1722-6.Google Scholar
Ponnameruma, (C.), Shimoyama, (A.), Yamada, (M.), Hobo, (T.) and Pal, (R.), 1977. Possible surface reactions on Mars: implications for Viking biology results. Science 197, 455-7.CrossRefGoogle Scholar
Powell, (B.N.), l969. Petrology and chemistry of mesosiderites - I. Textures and composition of nickel-iron. Geochim. cosmochim. Acta 33, 789-810.CrossRefGoogle Scholar
Powell, (B.N.), 1971. Petrology and chemistry of mesosiderites II. Silicate- textures and metal-silicate relationships. Geochim. cosmochim. Acta 35, 5-34.Google Scholar
Prinn, (R.G.), 1975. Venus: chemical and dynamical processes in the stratosphere and mesosphere. J. Atmos. sci. 32, 1237-47.2.0.CO;2>CrossRefGoogle Scholar
Prins, (P.), 1973. Apatite from African carbonatites. Lithos 6, 133-44.CrossRefGoogle Scholar
Prinz, (M.) and Keil, (K.), 1977. Mineralogy, petrology and chemistry of ANT-suite rocks from the lunar highlands. Phys. Chem. Earth 10, 215-37.Google Scholar
Prinz, (M.), Manson, (D.V.), Hlava, (P.F.) and Keil, (K.), 1975. Inclusions in diamonds: garnet lherzolite and eclogite assemblages. Phys. Chem. Earth 9, 797-815.CrossRefGoogle Scholar
Prinz, (M.), Fodor, (R.V.) and Keil, (K.), 1977a. Comparison of lunar rocks and meteorites: implications to histories of the Moon and parent meteorite bodies. NASA SP-370, 183-99.Google Scholar
Prinz, (M.), Keil, (K.), Hlava, (P.F ), Berkley, (J.L.) and Gomes, (C.B.), 1977b. Studies of Brazilian meteorites. III. Origin and history of the Angra dos Reis achondrite. Earth Planet. Sci. Lett. 35, 317-30.CrossRefGoogle Scholar
Prinz, (M.), Nehru, (C.E.), Berkley, (J.L.), Keil, (K.), Jarosewich, (E.) and Gomes, (C.B.), 1977c. Petrogenesis of the Serra de Magé Cumulate eucrite. Meteoritics 12, 341 (Abstr.).Google Scholar
Prinz, (M.), Klimentidis, (R.), Harlow, (G.E.) and Hewins, (R.J.), 1978. Petrologic studies bearing on the origin of the Lodran meteorite. Lunar and Planetary Sci. IX, 919-21.Google Scholar
Rajamani, (V.) and Naldrett, (A.J.), 1978. Partitioning of Fe.Co.Ni, and Cu between sulfide liquid and basaltic melts and the composition of Ni-Cu sulfide deposits. Econ. Geol. 73, 82-93.CrossRefGoogle Scholar
Rajamani, (V.), Chou, (C.-L.) and Naldrett, (A.J.) 1977. Partitioning of Pt-group elements between sulfide and basaltic melts. Geol. Soc. Amer., Abstr. xnxth Programs 9, 1135-6.Google Scholar
Rambaldi, (E.). 1976. Trace element content of metals from L-group chondrites. Earth Planet. Sci. Lett. 31, 224-38.CrossRefGoogle Scholar
Rambaldi, (E.), and Larimer, (J.W.), 1976. The Shaw chondrite, I. The case of the missing metal. Earth Planet. Sci. Lett. 33, 61-6.CrossRefGoogle Scholar
Ramdohr, (P.), 1976. The Mundrabilla Meteorite. Fortschr Mineral. 53, 165-86.Google Scholar
Rammensee, (W.) and Wänke, (H.), 1977. On the partition coefficient of tungsten between metal and silicate and its bearing on the origin of the moon. Proc. Lunar Sci. Conf. 8th, 399-409.Google Scholar
Randich, (E.) and Goldstein, (J.I.), 1978. Cooling rates of seven hexahedrites. Geochim. cosmochim. Acta 42, 221-33.CrossRefGoogle Scholar
Rasool, (S.I.) and DeBergh, (C.), 1970. The runaway greenhouse and the accumulation of CO2, in the Venus atmosphere. Nature 226, 1037-9.CrossRefGoogle ScholarPubMed
Rasool, (S.I.) and Le Sergeant, (L.), 1977. Implications of the Viking results for volatile outgassing from Earth and Mars. Nature 266, 822.CrossRefGoogle Scholar
Rasool, (S.I.), Hunten, (O.M.) and Kaula, (W.M.), 1977. What the exploration of Mars tells us about the Earth. Physics Today 23-32.CrossRefGoogle Scholar
Reasenberg, (R.), 1977. The moment of inertia and isostasy of Mars. J. Geophys. Res. 82, 369-75.CrossRefGoogle Scholar
Reid, (A.M.) and Cohen, (A.J.), 1967. Some characteristics of enstatite from enstatite achondrites. Geochim. cosmochim. Acta 31, 661-72.CrossRefGoogle Scholar
Reid, (A.M.), Duncan, (A.R.) and Richardson, (S.H.), 1977. In search of LKFM. Proc. Lunar Sci. Conf. 8th, 2321-38.Google Scholar
Reid, (A.M.) Bass, (M.N.), Fujita, (H.), Kerridge, (J.F.) and Fredriksson, (K.), 1970. Olivine and pyroxene in the Orgueil meteorite. Geochim. cosmochim. Acta 34, 1253-5.CrossRefGoogle Scholar
Richardson, (S.M.) and McSween|(N.Y., Jr.), 1978. Textural evidence bearing on the origin of isolated olivine crystals in C2 carbonaceous chondrites. Earth Planet. Sci. Lett. 37, 485-91.CrossRefGoogle Scholar
Rmgwood, (A.E.), 1961a. Chemical and genetic relationships among meteorites. Geochim. cosmochim. Acta 24, 159-97.CrossRefGoogle Scholar
Rmgwood, (A.E.), 1961b. Silicon in tbe metal phase of enstatite chondrites and some geochemical implications. Geochim. cosmochim. Acta 25, 1-13.CrossRefGoogle Scholar
Rmgwood, (A.E.), 1966a. Genesis of chondritic meteorites. Rev. Geophysics 4, 113-75.CrossRefGoogle Scholar
Rmgwood, (A.E.), 1966b. Chemical evolution of the terrestrial planets. Geochim. cosmochim. Acta 30, 41-104.CrossRefGoogle Scholar
Rmgwood, (A.E.), 1975. Composition and Petrology of the Earth's Mantle. (McGraw-Hill)Google Scholar
Rmgwood, (A.E.), 1977. Composition of the core and implications for the origin of the earth. Geochemical J. 11, 111-35.CrossRefGoogle Scholar
Rmgwood, (A.E.), Essene, (E.), 1970. Petrogenesis of Apollo 11 basalts, internal constitution and origin of the moon. Proc. Apollo ll Lunar Sci. conf. 1, 769-99.Google Scholar
Rmgwood, (A.E.), and Clark, (S.P.), 1971. Internal constitution of Mars. Nature 234, 89-92.CrossRefGoogle Scholar
Rmgwood, (A.E.), and Clark, (S.P.), and Kesson, (S.E.), 1977. Composition and origin of the moon. Proc. Lunar Sci. Conf. 8th, 371-98.Google Scholar
Ronov, (A.B.) and Yaroshevskiy, (A.A.), 1976. A new model for the chemical structure of the Earth's crust. Geochem. Int. 13, 1761-95.Google Scholar
Rosenhauer, (M.), Woermann, (E.), Knecht, (B.) and Ulmer, (C.G.), 1977. The stability of graphite and diamond as a function of the oxygen fugacity in the mantle. Second Int. Kimberlite Conf., Ext. Abstracts, unpaged.Google Scholar
Ross, (J.E.) and Aller, (L.H.), 1976. The chemical composition of the Sun. Science 191, 1223-9.CrossRefGoogle ScholarPubMed
Rowe, (J.J.), Morey, (G.W.) and Zen, (C.S.), 1972. The quinary reciprocal salt system. Na,K,Mg,Ca/Cl,SO4 - A review of the literature with new data.Geol. Soc. Amer. Prof. Pap. 741.CrossRefGoogle Scholar
Runcorn, (S.K.), 1976. Inferences concerning tne early thermal history of the moon. Proc. Lunar Sci. Conf. 7th, 3221-8.Google Scholar
Ruskol, (E.L.), 1960. The origin of the moon, l, Formation of a swarm of bodies around the earth. Sov. Astron. A.J. 4, 657-68.Google Scholar
Ruskol, (E.L.), 1963. On the origin of the moon, 2, The growth of the moon in the circumterrestrial swarm of satellites. Sov. Astron. A.J. 1, 221-7.Google Scholar
Ruskol, (E.L.), 1972. The origin of the moon, 3, Some aspects of the dynamics of the circumterrestrial swarm. Sov. Astron. A.J. 15, 646-54.Google Scholar
Ruskol, (Ye.L.), 1977. The origin of the Moon. NASA SP-370, 815-22.Google Scholar
Ryder, (G.) and Wood, (J.A.), 1977. Serenitatis and Imbrium impact melts: implications for large-scale layering in the lunar crust. Proc. Lunar Sci. Conf. 8th, 655-68.Google Scholar
Sabu, (D.D.) and Manuel, (O.K.), 1976. Xenon record of the early Solar System. Nature 261, 28-32.CrossRefGoogle Scholar
Safronov, (V.S.), 1972. Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets. Jerusalem (Israel Program for Scientific Translations).Google Scholar
Safronov, (V.S.), 1977. Time scale for the formation of the Earth and planets and its role in their geochemical evolution. NASA SP-370, 797-803.Google Scholar
Sagan, (C.), Toon, (O.B.) and Gierasch, (P.J.). 1973. Climatic change on Mars. Science 181, 1045-9.CrossRefGoogle ScholarPubMed
Saunders, (R.S.) and Malin, (M.C.), 1977. Geologic interpretation of new observations of the surface of Venus. Geophys. Res. Lett. 4, 547-50.CrossRefGoogle Scholar
Sawamoto, (H.), 1977. Orthorhombic perovskite (Mg,Fe) SiO3 and constitution of the lower mantle, 219-44. In High-pressure Research, eds. Manghnami, (M.H.) and Akimeto, (S.), New York (Academic Press).CrossRefGoogle Scholar
Schwarcz, (H.P.), Scott, (S.D.) and Kissin, (S.A.), 1975. Pressures of formation of iron meteorites from sphalerite compositions. Geochim. cosmochim. Acta 39, 1457-66.CrossRefGoogle Scholar
Scott, (E.R.B.), 1972. Chemical fractionation in iron meteorites and its interpretation. Geochim. cosmochim. Acta 36 1205-36.CrossRefGoogle Scholar
Scott, (E.R.B.), 1977a. Pallasites - metal composition, classification and relationships with iron meteorites. Geochim. cosmochim. Acta 41, 349-60.CrossRefGoogle Scholar
Scott, (E.R.B.), 1977b. Formation of olivine-metal textures in pallasite meteorites. Geochim. cosmochim. Acta 41, 693-710.CrossRefGoogle Scholar
Scott, (E.R.B.), 1977c. Geochemical relationships between some pallasites and iron meteorites. Mineral. Mag. 41, 265-72.CrossRefGoogle Scholar
Scott, (E.R.B.), 1977d. Composition, mineralogy and origin of group IC iron meteorites. Earth Planet. Sci. Lett. 37, 273-84.CrossRefGoogle Scholar
Scott, (E.R.B.), 1978a. Chemical fractionation of Ga and Ge in iron meteorites and the origin of anomalous irons. Nature, submitted.Google Scholar
Scott, (E.R.B.), 1978b. Primary fractionation of elements among iron meteorites. Geochim. cosmochim. Acta, in press.CrossRefGoogle Scholar
Scott, (E.R.B.), 1978c. Iron meteorites with low Ga and Ge concentrations - composition, structure and genetic relationships. Geochim. cosmochim. Acta, in press.CrossRefGoogle Scholar
Scott, (E.R.B.) and Wasson, (J.T.), 1975. Classification and properties of iron meteorites. Rev. Geophysics Space Physics 13, 527-46.CrossRefGoogle Scholar
Scott, (E.R.B.) and Wasson, (J.T.) 1976. Chemical classification of iron meteorites. - VIII. Groups IC, IIE, IIIF and 97 other irons. Geochim. cosmochim. Acta 40, 103-5.CrossRefGoogle Scholar
Shaw, (D.M.), 1972. Development of the early continental crust. Part I. Use of trace element distribution coefficient models for the protoarchean crust. Candian J. Earth Sci. 9, 1577-95.Google Scholar
Shaw, (D.M.), 1974. R-mode factor analysis on enstatite chondrite analyses. Geochim. cosmochim. Acta 38, 1607-13.CrossRefGoogle Scholar
Shaw, (D.M.) 1976. Development of the early continental crust. Part 2: Prearchean, protoarchean and later eras, 33-53. In Windley, (B.F.), ed. The Early History of the Earth, London (John Wiley).Google Scholar
Shih, (C.) and Schonfeld, (E.), 1976. Mare basalt genesis: A cumulate remelting model. Proc. Lunar Sci. Conf. 7th, 1757-92.Google Scholar
Shima, (H.) and Raldrett, (A.J.), 1975. Solubility of sulfur in an ultramafic melt and the relevance of the system Fe-S-O. Econ. Geol. 70, 960-7.CrossRefGoogle Scholar
Shimizu, (N.), 1975. Geochemistry of ultramafic inclusions from Salt Lake Crater, Hawaii, and from southern African kimberlites. Phys. Chem. Earth 9, 655-69.CrossRefGoogle Scholar
Shimizu, (N.) and Allègre, (C.J.), 1977. Geochemistry of transition elements in garnet lherzolite nodules in kimberlites. Second Int. Conf. Kimberlites, Ext. Abstr., unpaged.Google Scholar
Shoemaker, (E.M.), 1977a. Why study impact craters? In Impact and Bxplosion Cratering. New York (Pergamon). In Press.Google Scholar
Shoemaker, (E.M.), 1977b. Astronomically observable crater-forming projectiles, Preprint.Google Scholar
Short, (N.M.), 1975. Planetary Geology. Englewood Cliffs, New Jersey (Prentice-Hall).Google Scholar
Sibley, (D.F.) and Wilband, (J.T.), 1977. Chemical balance of the Earth's crust. Geochim. cosmochim. Acta 41, 545-54.CrossRefGoogle Scholar
Siegfried, (R.W., II) and Solomon, (S.C.), 1974. Mercury: internal structure and thermal evolution. Icarus 23, 192-205.CrossRefGoogle Scholar
Siever, (R.), 1974. Comparison of Earth and Mars as differentiated planets. Icarus 22, 312-24.CrossRefGoogle Scholar
Sill, (G.T.), 1976. Chemical reactions at the surface and in the atmosphere of Venus. Ph.D. thesis, Univ. of Arizona.Google Scholar
Sill, (G.T.) and wilkening, (L.L.), 1978. Ice clathrate as a possible source of the atmospheres of the terrestrial planets. Icarus 33, 13-22.CrossRefGoogle Scholar
Simpson, (P.R.) and Bowles, (J.F.W.), 1977. Uranium mineralization of the Witwatersrand and Dominion Reef system. Phil. Trans. R. Soc. London A286, 527-48.Google Scholar
Singer, (S.F.), 1970. How did Venus lose its angular momentum? Science 170, 1196-8.CrossRefGoogle ScholarPubMed
Skinner, (B.J.) and Luce, (F.D.), 1971. Solid solutions of the type (Ca,Mg,Mn,Fe)S and their use as geothermometers for the enstatite chondrites. Am. Mineral. 56, 1269-96.Google Scholar
Smith, (B.A.) and Goldstein, (J.I.), 1977. The metallic microstructures and thermal histories of severely reheated chondrites. Geochim. cosmochim. Acta 41, 1061-72.CrossRefGoogle Scholar
Smith, (J.V.), 1974. Origin of moon by disintegrative capture with chemical differentiation followed by sequential accretion. Lunar Science V, 718-20.Google Scholar
Smith, (J.V.), 1977. Possible controls on the bulk composition of the earth- implications for the origin of the earth and moon Proc. Lunar Sci. Conf. 8th 333.59Google Scholar
Smith, (J.V.), 1978. Possible controls on the bulk composition and origin of the: further discussion. Lunar Science IX, 1071-3.Google Scholar
Smith, (J.V.) and Dawson, (J.B.), 1975. Chemistry of Mg-rich micas from Kimberlites and xenoliths, with implications for volatiles In upper mantle. Geol. Soc Amer. Abstr. with Program 7, 1275-6.Google Scholar
Smith, (J.V.) and steele, (I.M.). Lunar mineralogy: a heavenly detective story. Part II. Am. Mineral. 61, 1059-1116.Google Scholar
Smith, (J.V.) and Hervjg, (R.L.), 1978 Shergotty meteorite: mineralogy, petrography and minor elements. Meteoritics, submitted.CrossRefGoogle Scholar
Smith, (J.V.), Hervig, (R.L.), Ackermand, (D.) and Dawson, (J.B.), 1978. K,Rb and 8a in micas from kimberlite and peridotitic xenoliths, and implications for origin of basaltic rocks. Proc. Second Int. Kimberlite Conf unpaged.CrossRefGoogle Scholar
Smith, (J.V.) and 7 otners, 1970a. Petrologic history of the moon inferred from petrography, mineralogy and petrogenesis of Apollo 11 rocks. Apollo ll Lunar Sci Conf. 1, 897-925.Google Scholar
Smith, (J.V.), Anderson, (A.T.), Newton, (R.C.), Olsen, (E.J.) and Wyllie, (P.J.). 1970b. A petrologic model for the Moon based on petrogenesis, experimental petrology, and physical properties. j. Geol. 78, 381-405.CrossRefGoogle Scholar
Smyth, (J.R.) and McGetchin, (T.R.), 1978. The mantle of Mars: some possible geological implications of its high density. Icarus, submitted.CrossRefGoogle Scholar
Snow, (T.P., Jr.), 1975. Depletion of interstellar elements and the interaction between gas and dust in space. Astrophys. J. 202, L87-90.CrossRefGoogle Scholar
Sobolev, (N.V.), 1972. Petrology of xenoliths in kimberlitic pipes and indications of their abyssal origin. 24th Int. Geol. Congr. sect 2 297-302.Google Scholar
Sobolev, (N.V.), 1977 Deep-seated Inclusions in Kimberlites and the Problem of the composition of the Upper Mantle, trans. Brown, D. A. and Boyd, F. R., Washington, D.C. (American Geophysical Union).CrossRefGoogle Scholar
Sobolev, (N.V.) and Lavrent'ev, (Ju.G.), 1971. Isomorphic sodium admixture in garnets formed at high pressure. Contr. Mineral. Petrol. 31, 1-12.Google Scholar
Solomon, (S.C.) 1976 Some aspects of core formation in Mercury. Icarus 28, 509-21.CrossRefGoogle Scholar
Solomon, (S.C.) 1977a. Magma oceanography: l. Thermal evolution. Proc. Lunar Sci. Conf. 8th 583-99.Google Scholar
Solomon, (S.C.) 1977b The relationship between crustal tectonics and internal evolution in the Moon and Mercury. Phys. Earth Planet. Int. 15, 135-45.CrossRefGoogle Scholar
Solomon, (S.C.), 1978a. Formation, history, and energetics of cores in the terrestrial planets. Phys. Earth Planet. Int., submitted.Google Scholar
Solomon, (S.C.), 1978b, On volcanism and thermal tectonics on one-plate Planets. Geophys. Res. Lett 5, 461-4.CrossRefGoogle Scholar
Solomon, (S.C.) and Chaiken, (J.), 1976. Thermal expansion and thermal stress in the moon and terrestrial planets: clues to early thermal history Proc. Lunar Sci. Conf. 7th, 3229-44.Google Scholar
Sonett, (C.P.) and Duba, (A.), 1975. Lunar temperature and global heat flux from laboratory electrical conductivity and lunar magnetometer data. Nature 258, 118-21.CrossRefGoogle Scholar
Sonett, (C.P.), Colburn, (C.S.), Schwartz, (K.) and Keil, (K.), 1970. The melting of asteroidai parent bodies by unipolar dynamo induction from a primordial T Tauri sun. Astrophys. Space Sci. 7, 446-88.CrossRefGoogle Scholar
Stacey, (F.D.), 1977. The Physics of the Earth. 2nd ed. New York (John Wiley).Google Scholar
Steele, (I.M.) and Smith, (J.V.), 1976. Mineralogy of the Ibitira eucrite and comparison with other eucrites and lunar samples. Earth Planet. Sci Lett 33 67-73.CrossRefGoogle Scholar
Stephens, (W.E.) and Dawson, (J.B.), 1977. Statistical comparison between pyroxenes from kimberlites and their associated xenoliths. J. Geol. 85, 433-49.CrossRefGoogle Scholar
Stern, (C.R.) and Wyllie, (P.J.), 1973. Water-saturated and undersaturated melting relations of a granite to 35 kilobars. Earth Planet Sci Lett. 18, 163-7.CrossRefGoogle Scholar
Sterrett, (K.F.), Klement, (W., Jr.) and Kennedy, (G.C.), 1965. Effect of pressure on the melting of iron. J Geophys. Res. 70, 1979-84.Google Scholar
Stöffler, (C.), 1972. Deformation and transformation of rock-forming minerals by natural and experimental shock processes. I. Behavior of minerals under shock compression. Fortschr. Mineral. 49, 50-113.Google Scholar
Stöffler, (C.), 1974. Deformation and transformation of rock-forming minerals by natural and experimental shock processes. ll. Physical properties of shocked minerals, Fortschr. Mineral. 51, 256-89.Google Scholar
Stolper, (E.), 1977. Experimental petrology of eucritic meteorites. Geochim. cosmochim. Acta 41, 587-611CrossRefGoogle Scholar
Stolper, (E.) and McSween, (H.Y., Jr.), 1978. Shergottite meteorites, ll. Experimental petrology. Lunar and. Planetary Sci. IX, 1119-21.Google Scholar
Stormer, (J.C.) and Carmichael, (I.S.E.), 1971. Fluorine-hydroxyl exchange in apatite and biotite: a potential igneous geothermometer. Contr. Mineral. Petrol. 31, 121-31.CrossRefGoogle Scholar
Strohmeier, (W.), 1972. Variable Stars. Oxford (Pergamon).Google Scholar
Sun, (S.S.) and Hanson, (G.N.), 1975. Evolution of the mantle: geochemical evidence from alkali basalts. Geology, 3, 297-302.2.0.CO;2>CrossRefGoogle Scholar
Sun, (S.) and Nesbitt, (R.W.) 1977. Chemical heterogeneity of the Archaean mantle, composition of the earth and mantle evolution. Earth Planet. Sci. Lett. 35, 429-48.Google Scholar
Surkov, (Yu. A.), Kirnozov, (F.F.) Vinogradov, (A.P.), 1979. Uranium, thorium and potassium content of Venus rock measured by Venera 8. Space Res. 14, 679-87.Google Scholar
Sze, (N.O.) and McElroy, (M.D.), 1975. Some problems in Venus’ aeronomy. Planet. Space Sci. 25, 763-86.Google Scholar
Takahashi, (H.), Janssens, (M.-J.) Morgan, (J.W.) and Anders, (E.), 1978. Further studies of trace elements in C3 chondrites. Geochim. cosmochim. Acta. 42, 97-106.CrossRefGoogle Scholar
Takeda, (H.), Miyamoto, (M.), Ishii, (T.) and Reid, (A.M.), 1976. Characterization of crust formation on a parent body of achondrites and the moon by pyroxene crystallography and chemistry. Proc. Lunar Sci. Conf. 7th 3535-48.Google Scholar
Tatsumoto, (M.), 1978. Isotopic composition of lead in oceanic basalt and its implication to mantle evolution. Earth Planet. Sci. Lett 38, 63-87.CrossRefGoogle Scholar
Taylor, (G.J.), and Heymann, (D.), 1971. The formation of clear taenite in ordinary chondrites. Geochim. cosmochim. Acta 35, 175-88.Google Scholar
Taylor, (S.R.), 1975. Lunar Science: A Post-Apollo View. New York (Pergamon).Google Scholar
Taylor, (S.R.), 1976. Geochemical constraints on the composition of the moon, Proc. Lunar Sci. Conf. 7th, 3461-77.Google Scholar
Taylor, (S.R.) and Jakes (P-). 1977. Geochemical evolution of the moon revisited. Proc. Lunar Sci. Conf. 8th, 433-46.Google Scholar
Thomsen, (L.), 1977. Theoretical foundations of equations of state for the terrestrial planets. Ann. Rev Earth Planet. Sci. 5, 491-513.CrossRefGoogle Scholar
Toksöz, (M.N.) and Johnston, (D.H.), 1974. The evolution of the moon. Icarus 21, 389-414.CrossRefGoogle Scholar
Toksöz, (M.N.) and Johnston, (D.H.), 1977. The evolution of the moon and the terrestrial planets. NASA SP-370, 295-327.Google Scholar
Tomisaka, (T.) and Eugster, (H.P.), 1968. synthesis of the sodalite group and subsolidus equilibria in the sodalite-noselite system. Mineral J.(Japan), 5, 249-275.CrossRefGoogle Scholar
Toulmin, (P.), 7 others, 1977. Geochemical and mineralogical interpretation of the Viking inorganic chemical results. J. Geophys. Res. 82, 4625-34.CrossRefGoogle Scholar
Trask, (N.J.)and Strom, (R.G.), 1976. Additional evidence of Mercurian volcanism. Icarus 28, 559-63.CrossRefGoogle Scholar
Turekian, (K.K.), 1976. The evolution of the Earth's outer spheres, unpublished summary of paper presented at meeting of Amer. Assoc. Adv. Science.Google Scholar
Turekian, (K.K.) and Clark, (S.P.,Jr.), 1969. Inhomogeneous accretion of the Earth from the primitive solar nebula. Earth. Planet. Sci Lett 6, 346-8.CrossRefGoogle Scholar
Turekian, (K.K.) and Clark, (S.P.,Jr.), 1975. The non-homogeneous accumulation model for terrestrial planet formation and the consequences for the atmosphere of Venus. J, Atmos. Sci. 32, 1257-61.Google Scholar
Turekian, (K.K.), Davis, (A.M.) and Clark, (S.P., Jr.), 1977. Co,Ni and Fe Partitioning between pallasitic phases. Meteoritics 12, 371-2 (Abstr.).Google Scholar
Urey, (H.C.) 1952. The Planet: Their Origin and Development. New Haven, Conn. (Yale University Press).Google Scholar
Urey, (H.C.) and Mayeda, (T.), 1959. The metallic particles of some chondrites. Geochim. Cosmochim. Acta 17, 113-24.Google Scholar
Usselman, (T.M.), 1975. Experimental approach to the state of the core: Part I. The 1iquidus relations of the Fe-rich portion of the Fe-Ni-S system from 30 to 100kb. II. Part II. Composition and thermal regime. Amer. J. Sci. 275, 278-90 and 291-303.CrossRefGoogle Scholar
Van Schmus, (W.R.), 1967. Polymict structure of the Mezö-Madaras chondrite. Geochim. cosmochim. Acta 31, 2027-47.Google Scholar
Van Schmus, (W.R.), 1969. The Mineralogy and petrology of chondritic meteorites. Earth-Science Reviews 5, 145-84.Google Scholar
Van Schmus, (W.R.) and Hayes, (J.M.), 1974, Chemical and petrographic correlation among carbonaceous chondrites. Geochim. cosmochim. Acta 38, 47-64.CrossRefGoogle Scholar
Veverka, (J.) and 8 others, 1974. A Mariner 9 atlas of the moons of Mars. Icarus 23, 206-89.CrossRefGoogle Scholar
Veverka, (J.) and Duxbury, (T.C.), 1977. Viking observations of Phobos and Deimos: preliminary results. J Geophys. Res. 82, 4213-23.CrossRefGoogle Scholar
Vilas, (F.) and McCord, (T.B.), 1976. Mercury: spectral reflectance measurements (0.33-1 -06um) 1974/75. Icarus 28, 593-9.CrossRefGoogle Scholar
Villaume, (J.F.) and Rose, (A.W.), 1977. The geochemistry of some Archean ultramafic lavas. chem. Geol. 19, 43-60.CrossRefGoogle Scholar
Visconti, (G.), 1977. Hydrogen escape in the terrestrial atmosphere at low oxyen levels: a photochemical model. J. Atmos. Sci. 34, 193-204.2.0.CO;2>CrossRefGoogle Scholar
Wahl, (W.), 1963. Cosmical changes and metamorphism of stony meteorites due to heating effects. Geochim. cosmochim. Acta 27, 1025-37.CrossRefGoogle Scholar
Wai, (C.M.) and Wasson, (J.T.), 1969. Silicon concentrations in the metal of iron meteorites. Geochim. cosmochim. Acta 33, 1465-71.CrossRefGoogle Scholar
Wai, (C.M.) and Wasson, (J.T.), 1970. Silicon in the Nedagolla ataxite and the relationship between Si and Cr in reduced iron meteorites. Geochim. cosmochim. Acta 34, 408-10.CrossRefGoogle Scholar
Wai, (C.M.) and Knowles, (C.R.), 1972. The metal Phase of the Bustee enstatite achondrite. Mineral. Mag. 38, 627-9.CrossRefGoogle Scholar
Walker, (J.C.G.), 1975. Evolution of the atmosphere of Venus. J. Atmos. Sci. 32. 1248-56.2.0.CO;2>CrossRefGoogle Scholar
Ward, (W.R.), 1974, Climatic variations on Mars. J Geophys. Res. 79, 3375-86.Google Scholar
Ward, (W.R.) and Reid, (M.J.), 1973. Solar tidal friction and satellite loss. Mon. Nat. R. Astron. Soc. 164, 21-32.CrossRefGoogle Scholar
Wark, (O.A.) and Lovering, (J.F.) 1976. Refractory/platinum metal grains in Allende calcium-aluminium-rich clasts (CARC's): possible exotic presolar material? Lunar Sci. VII, 912-4.Google Scholar
Wasilewski, (P.), 1976. Shock-loading meteoritic b.c.c, metal above the pressure transition: remanent-magnetization stability and microstructure. Phys. Earth Planet. Inter. 11, P5-11.CrossRefGoogle Scholar
Wasson, (J.T.), 1974. Classification and Properties. New York (Springer).Google Scholar
Wasson, (J.T.), 1977. Chondrite classification and origin. Meteoritics 12 381-3. (Abstr.).Google Scholar
Wasson, (J.T.) and Wai, (C.M.), 1970. Composition of the metal, schreibersite and perryite of enstatite achondrites and the origin of enstatite chondrites and achondrites. Geochim. cosmochim. Acta 34 169-84.CrossRefGoogle Scholar
Wasson, (J.T.) and Wai, (C.M.), 1975. Explanation for the very low gallium and germanium concentrations in some iron meteorite groups. Nature 261, 114-6.CrossRefGoogle Scholar
Wasson, (J.T.), scaudy, (R.), Bild, (R.W.) and Chdu, (C.), 1974. Mesosiderites - I. Compositions of their metallic portions and possible relationship to other metal-rich meteorite of groups. Geochim. cosmochim. Acta 38, 135-49.CrossRefGoogle Scholar
Wasson, (J.T.), Chou, (C.-L.), Bild, (R.W.) and Baedecker, (P.A.), 1976. Classification of and elemental fractionation among ureilites. Geochim. cosmochim. Acta. 40, 1449-58.CrossRefGoogle Scholar
Weast, (R.C.), 1969. ed. Handbook of chemistry and Physics. 50th ed. Cleveland (Chemical Rubber Co.).Google Scholar
Weber, (H.W.), Begemann, (F.) and Hintenberger, (H.), 1976. Primordial gases in graphite-diamond-kamacite inclusions from the Haverö ureilite. Earth Planet. Sci. Lett. 29, 81-90.CrossRefGoogle Scholar
Weidenschilling, (S.J.) 1976. accretion of the terrestrial planets. II. Icarus 27, 161-70.CrossRefGoogle Scholar
Weinke, (H.H.) 1977, Chemical and mineralogical investigation of a Mundrabilla specimen. Meteorities 12, 384-7. (Abstr.).Google Scholar
Wesson, (P.S.) 1974. A synthesis of our present knowledge of interstellar dust. Space Sci. Rev. 15, 469-82.CrossRefGoogle Scholar
Wetherill, (G.W.), 1975. Radiometric chronology of the early solar system. Ann. Rev. Nucl . Sci. 25, 283-328.CrossRefGoogle Scholar
Wetherill, (G.W.), 1976. Tfie role of large bodies in the formation of the earth and moon. Proc. Lunar Sci. Conf. 7th, 3245-57.Google Scholar
Wetherill, (G.W.), 1977. Evolution of the earth's planetesimal swarm subsequent to the formation of the earth and moon. Proc, Lunar sci. Conf, 8th, 1-16.Google Scholar
Whipple, (F.L.). The history of the solar system. Proc. Nat. Acad. Sci. Washington 52, 565-94.CrossRefGoogle Scholar
Wickranmsinghe, (N.C), 1974. Formaldehyde polymers in interstellar space. Nature 252, 462-3.Google Scholar
Wilhelms, (D.E.), 1976. Mercurian volcanism questioned. Icarus 28, 551-8CrossRefGoogle Scholar
Wilkening, (L.L.), 1976. Carbonaceous chondritic xenoliths and planetary-type noble gases in gas-rich meteorites. Proc. Lunar Sci. Conf. 7th, 3549-59.Google Scholar
Wilkening, (L.L.) and Clayton, (R.N.), 1974. Foreign inclusions in stony meteorites - II. Rare gases and oxygen isotopes in a carbonaceous chondritic xenolith in the Plainview gas-rich chondrite. Geochim. cosmochim. Acta 38, 937-45.CrossRefGoogle Scholar
Wilkening, (L.L.) and Anders, (E.), 1975. Some studies of an unusual eucrite. Geochim. cosmochim. Acta 39, 1205-10.CrossRefGoogle Scholar
Williams, (I.P.) Cremin, (A.W.), 1968. A survey of theories relating to the origin of the solar system. Quart. J. R. Astron. Soc. 9, 40-62.Google Scholar
Windley, (B.F.), 1975. ed. The Early History of the Earth. London (John Wiley).Google Scholar
Windley, (B.F.), 1977. The Evolving Continents. London (John Wiley).Google Scholar
Winkler, (H.G.F.), 1974. Petrogenesis of Metamorphic Rock, 3rd ed. Mew York (Springer).CrossRefGoogle Scholar
Wlotzka, (F.) and Jarosewich, (E.), 1977. Mineralogical and chemical compositions of silicate inclusions in the El Taco, Campo del Cielo iron meteorite. Smithsonian Contrib. Earth Sci. 19, 104-25.Google Scholar
Wood, (C.A.) and Head, (J.W.), 1976. Comparison of impact basins on Mercury, Mars and the Moon. Proc. Lunar Sci. Conf. 7th, 3629-51.Google Scholar
Wood, (J.A.), 1962. Metamorphism in chondrites. Geochim. cosmochim. Acta 26, 739-49.CrossRefGoogle Scholar
Wood, (J.A.), 1963. On the origin of chondrules and chondrites. Icarus 2, 152-80.CrossRefGoogle Scholar
Wood, (J.A.), 1964. The couling rates and parent planets of several iron meteorites. Icarus 3, 429-59.CrossRefGoogle Scholar
Wood, (J.A.), 1967. Olivine and pyroxene compositions in Type II carbonaceous chondrites. Geochim. cosmochim. Acta 31, 2095-2108.CrossRefGoogle Scholar
Wood, (J.A.), 1968. Meteorites and Origin of Planet. New York (McGraw-Hill).Google Scholar
Wood, (J.A.), 1977. A survey of lunar rock types and comparison of the crust of Earth and Moon. NASA SP-370.Google Scholar
Wood, (J.A.), 1978. Pallasites and the growth of parent meteorite bodies. Lunar and. Planetary Sci. IX 1273-5.Google Scholar
Wood, (J.A.) and Mitler, (H.E.), 1974. Origin of the moon by a modified capture mechanism, or half of a loaf is betterthan a whole one. Lunar Science V, 851-3.Google Scholar
Wood, (J.A.) and McSween, (H.Y., Jr.), 1977. Chondrules as condensation products, 365-73. In Comets Asteroids-Meteorites, ed. Delsemme, (A.H.), Toledo, Ohio (University of Toledo).Google Scholar
Wood, (J.A.), Dickey, (J.S., Jr.), Marvin, (U.B.) and Powell, (B.N.), 1977. Lunar anorthosites and a geophysical model of the moon. proc. Apollo II Lunar sci. Conf. 1, 965-88.Google Scholar
Wyllie, (P.J.), 1971. The Dynamic Earth. New York (John Wiley).Google Scholar
Wyllie, (P.J.), 1973. Experimental petrology and global tectonics - a Preview. Tectonics 17, 189-209.Google Scholar
Wyllie, (P.J.), 1977. Effects of H2O and CO2 on magma generation in the crust and mantle. J. Geol. Soc. London 134, 215-34.CrossRefGoogle Scholar
Wyllie, (P.J.), 1978. Mantle fluid compositions buffered in peridotite-CO2-H2O by carbonates, amphibole and phlogopite. J. Geol. 86, in press.CrossRefGoogle Scholar
Wyllie, (P.J.) and Huang, (W.L.), 1976a. Carbonation and melting reactions in system. CaO-MgO-SiO2-CO2 at mantle pressures with geophysical and petrological applications. Contr. Mineral. Petrol. 54, 79-107.CrossRefGoogle Scholar
Wyllie, (P.J.) and Huang, (W.L.), 1976b. High CO2 solubilities in mantle magmas. Geology 4, 21-24.2.0.CO;2>CrossRefGoogle Scholar
Yagi, (T.), Mao, (M.K.) and Bell, (P.M.), 1977. Crystal structure of MgSiO3 perovskite. Carnegie Inst. of Washington Yearb. 76, 516-9.Google Scholar
Yagi, (T.), Mao, (M.K.) and Bell, (P.M.), 1978. Structure and crystal Chemistry of perovskite-type MgSiO3. Phys. Chem. Minerals, Submitted.CrossRefGoogle Scholar
Yoder, (H.S., Jr.), 1976. Generation of Basaltic Magma. Washington, D.C. (National Academy of Sciences).Google Scholar
Zaikowski, (A.), Knacke, (R.F.) and Porco, (C.C.), 1975. On the presence of pbyllosilicate minerals in the interstellar grains. Astrophys. Space. Sci. 35, 97-115.CrossRefGoogle Scholar
Zellner, (B.) and Bowell, (E.), 1977. Asteroid compositional types and their distributions, 185-198. In Comets-Asteroids-Meteorites, ed. Delsemme, (A.H.), Toledo, Ohio (University of Toledo).Google Scholar
Zellner, (B.) and Capen, (R.C.), 1974. Photometric properties of the Martian satellites. Icarus 23, 437-44.CrossRefGoogle Scholar
Zellner, (B.), Leake, (M.), Morrison, (D.) and Williams, (J.G.), 1977. The Easteroids and the origin of the enstatite achondrites. Geochim. cosmochim. Acta 41, 1759-67.CrossRefGoogle Scholar
Zellner, (B.), Leake, (M.), Lebertre, (T.), Duseaux, (M.) and Dollfus, (A.), 1977a, The asteroid albedo scale. I. Laboratory polarimetry of meteorites. Proc. Lunar Sci. Conf. 8th, 1091-110.Google Scholar
Zellner, (B.), Lebertre, (T.) and Day, (K.), 1977b. The asteroid albedo scale - II. Laboratory polarimetry of-dark carbon-bearing silicates. Proc. Lunar Sci. Conf. 8th, 1111-17.Google Scholar
Zuckerman, (B.), 1977. Interstellar molecules, Nature 268, 491-5.CrossRefGoogle Scholar
Bills, (B.G.) and Ferrari, (A.J.), 1978. Mars topography harmonics and geophysical implications. J. Geophys. Res. 83, 3497-3508.CrossRefGoogle Scholar
Boudier, (F.), 1978. Structure and petrology of the Lanzo peridotite massif (Piedmont Alps). Geol. Soc. Amer. Bull. 89, 1574-91.2.0.CO;2>CrossRefGoogle Scholar
Bowell, (E.), Chapman, (C.R.), Gradie, (J.C.), Morrison, (D.) and Zellner, (B.), 1978. Taxonomy of asteroids. Icarue 35, 313-35.CrossRefGoogle Scholar
Burns, (J.A.), ed., 1978. Planetary Satellites. Tucson (University of Arizona Press).Google Scholar
Butler, (R.) and Anderson, (D.L.), 1978. Equation of state fits to the lower mantle and outer core. Phys. Forth Planet Int. 17, 147-62.CrossRefGoogle Scholar
Clark, (B.C.), 1978. Implications of abundant hygroscopic minerals in the Martian regolith. lcarus 34, 645-65.Google Scholar
Collerson, (K.D.) and Fryer, (B.J.), 1978. The role of fluids in the formation and development of early continental crust. Contr. Mineral. Petrol. 67, 151-67.CrossRefGoogle Scholar
Consolmagno, (G.J.) and Lewis, (J.S.), 1978. The evolution of icy satellite interiors and surfaces. Icarus 34, 280-93.CrossRefGoogle Scholar
Derraott, (S.F.), ed., 1978. Origin of the Solar System. Based on a NATO Advanced Study Institute, 1976. Chichester, England (John Wiley).Google Scholar
Dzurisin, (D.), 1978. The tectonic and volcanic history of Mercury as inferred from studies of scarps, ridges, troughs, and other lineaments. J. Geophys. Res. 83, 4883-906.Google Scholar
Eggler, (D.H.), 1978. The effect of CO2 upon partial melting of peridotite in the system Na2O-CaO-Al2O3-MgO-SiO2-CO2 to 35kb, with an analysis of melting in a peridotite-H2O-CO2 system. Amer. J. Sai. 278, 305-43.CrossRefGoogle Scholar
Feidman, (P.O.), 1977. The composition of comets. Amer. Scientist 65, 299-309.Google Scholar
Floran, (R.J.), Prinz, (M.), Hlava, (P.F.), Keil, (K.), Nehru, (C.E.) and Minthorne, (J.R.), 1978. The Chassigny meteorite: a cumulate dunite with hydrous amphibole-bearing melt inclusions. Geoahim. Cosmochim. Acta 42, 1213-29.Google Scholar
Fricker, (P.E.), Reynolds, (R.T.), Summers, (A.L.) and Cassen, (P.M.), 1976. Does Mercury have a molten core? Nature 259, 293-4.CrossRefGoogle Scholar
Fuller, (A.O.) and Hargraves, (R.B.), 1978. Some consequences of a liquid water saturated regolith in early Martian history. Icarus 3 614-21.CrossRefGoogle Scholar
Gooding, (J.L.) and Keil, (K.), 1978. Alteration of glass as a possible source of clay minerals on Mars. Geophys. Res. Lett. 5, 727-30.CrossRefGoogle Scholar
Greenberg, (R.), Wacker, (J.F.), Hartmann, (W.K.) and Chapman, (C.R.), 1978. Planetesimals to planets: numerical simulation of collisional evolution. 35, 1-26.Google Scholar
Head, (J.W.), Wood, (C.A.) and Mutch, (T.A.), 1977. Geologic evolution of the terrestrial planets. Amer. Scientist 65, 21-9.Google Scholar
Heymann, (D.), 1978. Solar gases in meteorites: the origin of chondrites and Cl carbonaceous chondrites. Meteoritics, 13 291-303.CrossRefGoogle Scholar
Johnson, (T.V.), 1978. The Galilean satellites of Jupiter: four worlds. Ann. Rev. Earth Planet. Sci. 6, 93-125.CrossRefGoogle Scholar
Kulpecz, (A.A., Jr.) and Hewins, (R.H.), 1978. Cooling rate based on schreibersite growth for the Emery mesosiderite. Geoahim. Cosmoahim. Acta 42, 1495-1500.Google Scholar
Lambert, (R.st.J.) and Chamberlain, (V.E.), 1978. CO2 permafrost and Martian topography. Icarus 34, 568-80.CrossRefGoogle Scholar
Lebofsky, (L.A.), 1977. Identification of water frost on Callisto. Nature 269, 785-7.CrossRefGoogle Scholar
Lebofsky, (L.A.), Veeder, (G.J.), Lebofsky, (M.J.) and Matson, (D.L.), 1978. Visual and radiometric photometry of 1580 Betulia. Icarus 35, 336-43.CrossRefGoogle Scholar
Loper, (D.E.), 1978. The gravitationally powered dynamo. Geophys. J. Roy. Astron. Soc. 54, 389-404.CrossRefGoogle Scholar
Matsui, (T.) and Mizutani, (H.), 1978. Gravitational N-body problem on the accretion process of terrestrial planets. Icarus 34, 146-72.CrossRefGoogle Scholar
McGetchin, (T.R.) and Smyth, (J.R.), 1978. The mantle of Mars: some possible geological implications of its high density. Icarus 34. 512-36.CrossRefGoogle Scholar
Merrill, (R.B.) and Papike, (J.J.), eds., 1978. Mare Crisium. The View from Luna 24. New York (Pergamon).Google Scholar
Morrison, (D.) and Wells, (W.C.), eds., 1978. Asteroids: an exploration assessment. NASA Conference Publication 2053, 300 pp. Contains 15 papers and discussion.Google Scholar
Olsen, (E.) and Grossman, (L.), 1978. On the origin of isolated olivine grains in type 2 carbonaceous chondrites. Earth Planet. Sci. Lett. 41, 111-27.CrossRefGoogle Scholar
Rambaldi, (E.R.), Cendales, (M.) and Thacker, (R.), 1978. Trace element distribution between magnetic and non-magnetic portions of ordinary chondrites. Earth Planet. Sci. Lett. 40, 175-86.CrossRefGoogle Scholar
Sagan, (C.), 1976. Erosion and the rocks of Venus, Nature, 261 31.CrossRefGoogle Scholar
Scott, (E.R.D.), 1978. Iron meteorites with low Ga and Ge concentrations -composition, structure and genetic relationships. Geochim. Cosmochim. Acta 42, 1243-51.CrossRefGoogle Scholar
Sears, (D.w.), 1978. Condensation and the composition of iron meteorites. Earth Planet. Sci. Lett. 41, 128-38.CrossRefGoogle Scholar
Smith, (P.H.), 1978. Diameters of the Galilean satellites from Pioneer data. Icarus 35, 167-76.CrossRefGoogle Scholar
Soderblom, (L.A.) and Wenner, (D.B.), 1978. Possible fossil H2O liquid-ice interfaces in the Martian crust. Icarus 34, 622-37.CrossRefGoogle Scholar
Soderblom, (L.A.), Edwards, (K.), Eliason, (E.M.), Sanchez, (E.M.) and Charette, (M.P.), 1978. Global color variations on the Martian surface. Icarus 34, 446-64.CrossRefGoogle Scholar
Solomon, (S.C.), 1978. On volcanism and thermal tectonics on one-plate planets. Geophys. Res. Lett. 5, 461-4.CrossRefGoogle Scholar
Tedesco, (E.), Drummond, (J.), Candy, (M.),Birch, (P.), Nikoloff, (I.) and Zellner, (B.), 1978. 1580 Betulia, an unusual asteroid with an extraordinary light curve. laarus 35, 344-59.Google Scholar
Toksöz, (M.N.) and Hsui, (A.T.), 1978. Thermal history and evolution of Mars. Icarus 34, 537-47.CrossRefGoogle Scholar
Warner, (J.L.) and Bickel, (C.E.), 1978. Lunar plutonic rocks: a suite of minerals depleted in trace siderophile elements. Amer. Mineral. 63, 1010-5.Google Scholar
Weidenschilling, (S.J.), 1978. Iron/silicate fractionation and the origin of Mercury. Icarus 35, 99-111.CrossRefGoogle Scholar
Willis, (J.) and Wasson, (J.T.), 1978. Cooling rates of group IVA iron meteorites. Earth Planet. Sci. Lett. 40, 141-50.CrossRefGoogle Scholar
Horen, (A.E.) and Goldstein, (J.I.), 1978. Cooling rate variations of group IVA iron meteorites. 151-61.CrossRefGoogle Scholar
Willis, (J.) and Wasson, (J.T.), 1978. A core origin for group IVA iron meteorites: A reply to Moren and Goldstein, 162-67.CrossRefGoogle Scholar
Wyllie, (P.J.), 1978. The effect of H2O and CO2 on planetary mantles. Geophys. Res. Lett. 5, 440-2.CrossRefGoogle Scholar
Yagi, (T.), Mao, (H.-K.) ancf Bell, (P.M.), 1978. Structure and crystal chemistry of perovskite-type MgSiO3 . Phys. Chem. Minerals 3, 97-110.CrossRefGoogle Scholar
Bills, (B.G.) and Ferrari, (A.J.), 1978. Mars topography harmonics and geophysical implications. J. Geophys. Res. 83, 3497-3508.CrossRefGoogle Scholar
Boudier, (F.), 1978. Structure and petrology of the Lanzo peridotite massif (Piedmont Alps). Geol. Soc. Amer. Bull. 89, 1574-91.2.0.CO;2>CrossRefGoogle Scholar
Bowell, (E.), Chapman, (C.R.), Gradie, (J.C.), Morrison, (D.) and Zellner, (B.), 1978. Taxonomy of asteroids. Icarue 35, 313-35.CrossRefGoogle Scholar
Burns, (J.A.), ed., 1978. Planetary Satellites. Tucson (University of Arizona Press).Google Scholar
Butler, (R.) and Anderson, (D.L.), 1978. Equation of state fits to the lower mantle and outer core. Phys. Forth Planet Int. 17, 147-62.CrossRefGoogle Scholar
Clark, (B.C.), 1978. Implications of abundant hygroscopic minerals in the Martian regolith. lcarus 34, 645-65.Google Scholar
Collerson, (K.D.) and Fryer, (B.J.), 1978. The role of fluids in the formation and development of early continental crust. Contr. Mineral. Petrol. 67, 151-67.CrossRefGoogle Scholar
Consolmagno, (G.J.) and Lewis, (J.S.), 1978. The evolution of icy satellite interiors and surfaces. Icarus 34, 280-93.CrossRefGoogle Scholar
Derraott, (S.F.), ed., 1978. Origin of the Solar System. Based on a NATO Advanced Study Institute, 1976. Chichester, England (John Wiley).Google Scholar
Dzurisin, (D.), 1978. The tectonic and volcanic history of Mercury as inferred from studies of scarps, ridges, troughs, and other lineaments. J. Geophys. Res. 83, 4883-906.Google Scholar
Eggler, (D.H.), 1978. The effect of CO2 upon partial melting of peridotite in the system Na2O-CaO-Al2O3-MgO-SiO2-CO2 to 35kb, with an analysis of melting in a peridotite-H2O-CO2 system. Amer. J. Sai. 278, 305-43.CrossRefGoogle Scholar
Feidman, (P.O.), 1977. The composition of comets. Amer. Scientist 65, 299-309.Google Scholar
Floran, (R.J.), Prinz, (M.), Hlava, (P.F.), Keil, (K.), Nehru, (C.E.) and Minthorne, (J.R.), 1978. The Chassigny meteorite: a cumulate dunite with hydrous amphibole-bearing melt inclusions. Geoahim. Cosmochim. Acta 42, 1213-29.Google Scholar
Fricker, (P.E.), Reynolds, (R.T.), Summers, (A.L.) and Cassen, (P.M.), 1976. Does Mercury have a molten core? Nature 259, 293-4.CrossRefGoogle Scholar
Fuller, (A.O.) and Hargraves, (R.B.), 1978. Some consequences of a liquid water saturated regolith in early Martian history. Icarus 3 614-21.CrossRefGoogle Scholar
Gooding, (J.L.) and Keil, (K.), 1978. Alteration of glass as a possible source of clay minerals on Mars. Geophys. Res. Lett. 5, 727-30.CrossRefGoogle Scholar
Greenberg, (R.), Wacker, (J.F.), Hartmann, (W.K.) and Chapman, (C.R.), 1978. Planetesimals to planets: numerical simulation of collisional evolution. 35, 1-26.Google Scholar
Head, (J.W.), Wood, (C.A.) and Mutch, (T.A.), 1977. Geologic evolution of the terrestrial planets. Amer. Scientist 65, 21-9.Google Scholar
Heymann, (D.), 1978. Solar gases in meteorites: the origin of chondrites and Cl carbonaceous chondrites. Meteoritics, 13 291-303.CrossRefGoogle Scholar
Johnson, (T.V.), 1978. The Galilean satellites of Jupiter: four worlds. Ann. Rev. Earth Planet. Sci. 6, 93-125.CrossRefGoogle Scholar
Kulpecz, (A.A., Jr.) and Hewins, (R.H.), 1978. Cooling rate based on schreibersite growth for the Emery mesosiderite. Geoahim. Cosmoahim. Acta 42, 1495-1500.Google Scholar
Lambert, (R.st.J.) and Chamberlain, (V.E.), 1978. CO2 permafrost and Martian topography. Icarus 34, 568-80.CrossRefGoogle Scholar
Lebofsky, (L.A.), 1977. Identification of water frost on Callisto. Nature 269, 785-7.CrossRefGoogle Scholar
Lebofsky, (L.A.), Veeder, (G.J.), Lebofsky, (M.J.) and Matson, (D.L.), 1978. Visual and radiometric photometry of 1580 Betulia. Icarus 35, 336-43.CrossRefGoogle Scholar
Loper, (D.E.), 1978. The gravitationally powered dynamo. Geophys. J. Roy. Astron. Soc. 54, 389-404.CrossRefGoogle Scholar
Matsui, (T.) and Mizutani, (H.), 1978. Gravitational N-body problem on the accretion process of terrestrial planets. Icarus 34, 146-72.CrossRefGoogle Scholar
McGetchin, (T.R.) and Smyth, (J.R.), 1978. The mantle of Mars: some possible geological implications of its high density. Icarus 34. 512-36.CrossRefGoogle Scholar
Merrill, (R.B.) and Papike, (J.J.), eds., 1978. Mare Crisium. The View from Luna 24. New York (Pergamon).Google Scholar
Morrison, (D.) and Wells, (W.C.), eds., 1978. Asteroids: an exploration assessment. NASA Conference Publication 2053, 300 pp. Contains 15 papers and discussion.Google Scholar
Olsen, (E.) and Grossman, (L.), 1978. On the origin of isolated olivine grains in type 2 carbonaceous chondrites. Earth Planet. Sci. Lett. 41, 111-27.CrossRefGoogle Scholar
Rambaldi, (E.R.), Cendales, (M.) and Thacker, (R.), 1978. Trace element distribution between magnetic and non-magnetic portions of ordinary chondrites. Earth Planet. Sci. Lett. 40, 175-86.CrossRefGoogle Scholar
Sagan, (C.), 1976. Erosion and the rocks of Venus, Nature, 261 31.CrossRefGoogle Scholar
Scott, (E.R.D.), 1978. Iron meteorites with low Ga and Ge concentrations -composition, structure and genetic relationships. Geochim. Cosmochim. Acta 42, 1243-51.CrossRefGoogle Scholar
Sears, (D.w.), 1978. Condensation and the composition of iron meteorites. Earth Planet. Sci. Lett. 41, 128-38.CrossRefGoogle Scholar
Smith, (P.H.), 1978. Diameters of the Galilean satellites from Pioneer data. Icarus 35, 167-76.CrossRefGoogle Scholar
Soderblom, (L.A.) and Wenner, (D.B.), 1978. Possible fossil H2O liquid-ice interfaces in the Martian crust. Icarus 34, 622-37.CrossRefGoogle Scholar
Soderblom, (L.A.), Edwards, (K.), Eliason, (E.M.), Sanchez, (E.M.) and Charette, (M.P.), 1978. Global color variations on the Martian surface. Icarus 34, 446-64.CrossRefGoogle Scholar
Solomon, (S.C.), 1978. On volcanism and thermal tectonics on one-plate planets. Geophys. Res. Lett. 5, 461-4.CrossRefGoogle Scholar
Tedesco, (E.), Drummond, (J.), Candy, (M.),Birch, (P.), Nikoloff, (I.) and Zellner, (B.), 1978. 1580 Betulia, an unusual asteroid with an extraordinary light curve. laarus 35, 344-59.Google Scholar
Toksöz, (M.N.) and Hsui, (A.T.), 1978. Thermal history and evolution of Mars. Icarus 34, 537-47.CrossRefGoogle Scholar
Warner, (J.L.) and Bickel, (C.E.), 1978. Lunar plutonic rocks: a suite of minerals depleted in trace siderophile elements. Amer. Mineral. 63, 1010-5.Google Scholar
Weidenschilling, (S.J.), 1978. Iron/silicate fractionation and the origin of Mercury. Icarus 35, 99-111.CrossRefGoogle Scholar
Willis, (J.) and Wasson, (J.T.), 1978. Cooling rates of group IVA iron meteorites. Earth Planet. Sci. Lett. 40, 141-50.CrossRefGoogle Scholar
Horen, (A.E.) and Goldstein, (J.I.), 1978. Cooling rate variations of group IVA iron meteorites. 151-61.CrossRefGoogle Scholar
Willis, (J.) and Wasson, (J.T.), 1978. A core origin for group IVA iron meteorites: A reply to Moren and Goldstein, 162-67.CrossRefGoogle Scholar
Wyllie, (P.J.), 1978. The effect of H2O and CO2 on planetary mantles. Geophys. Res. Lett. 5, 440-2.CrossRefGoogle Scholar
Yagi, (T.), Mao, (H.-K.) ancf Bell, (P.M.), 1978. Structure and crystal chemistry of perovskite-type MgSiO3 . Phys. Chem. Minerals 3, 97-110.CrossRefGoogle Scholar