Article contents
Major element chemistry of the geothermal sea-water at Reykjanes and Svartsengi, Iceland
Published online by Cambridge University Press: 05 July 2018
Summary
High-temperature geothermal fields in Iceland represent localized anomalies of hot, altered rock in the uppermost part of the crust, which coincide with points of maximum tectonic/magmatic activity. These points correspond to the intersection of oblique fault swarms to the plate boundaries. Geothermal activity under mid-ocean ridges follows probably similar tectonic/magmatic anomalies.
Due to high permeability sea-water invades the bed-rock of the Reykjanes Peninsula, Iceland, and is overlain by a variably thick lens of dilute ground water of meteoric origin. The variable degree of salinity of geothermal waters in the Reykjanes Peninsula has resulted from different degree of mixing of fresh ground water with the underlying sea-water-ground-water in the downflow zones around the geothermal fields. At Reykjanes the geothermal water represents heated sea-water without any freshwater mixing. The difference in the composition of sea-water or sea-water/fresh water mixtures and the geothermal waters is due to basalt/water interaction at elevated temperatures. The major-element chemistry of the geothermal water represents an equilibrium composition at the relevant aquifer temperatures. The activities of silica, calcium, sulphate, and carbonate are thus limited by the solubilities of quartz, anhydrite, and calcite. Fluoride activity is thought to be controlled by an ionic exchange reaction where it substitutes for hydroxyl groups in phyllosilicates. The ratios of individual cations and hydrogen ion are governed by ionic exchange equilibria with hydrothermal minerals, probably smectite and chlorite. The equilibrium pH for the Reykjanes and Svartsengi geothermal waters is 5·5 and 5·1 respectively. Sea-water will become somewhat acid upon heating to more than about 300 °C and equilibration with basalt, the acidity increasing with temperature.
- Type
- Research Article
- Information
- Copyright
- Copyright © The Mineralogical Society of Great Britain and Ireland 1978
References
- 70
- Cited by