Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-23T00:19:51.765Z Has data issue: false hasContentIssue false

Iron-bearing to iron-rich tourmalines from granitic pegmatites of the Murzinka pluton, Central Urals, Russia

Published online by Cambridge University Press:  26 August 2022

Tatiana A. Gvozdenko*
Geological Faculty, Lomonosov Moscow State University, Leninskiye Gory 1, Moscow, 119991 Russia
Ivan A. Baksheev
Geological Faculty, Lomonosov Moscow State University, Leninskiye Gory 1, Moscow, 119991 Russia
Dmitry A. Khanin
Geological Faculty, Lomonosov Moscow State University, Leninskiye Gory 1, Moscow, 119991 Russia Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences, ulitsa Akademika Osypyana 4, Chernogolovka, Moscow Oblast, 142432 Russia
Mikhail V. Voronin
Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences, ulitsa Akademika Osypyana 4, Chernogolovka, Moscow Oblast, 142432 Russia
Maria V. Chervyakovskaya
Zavaritsky Institute of Geology and Geochemistry, Ural Branch, Russian Academy of Sciences, ulitsa Akademika Vonsovskogo, 15, Ekaterinburg, 620016 Russia
Vadim V. Smolensky
Saint Petersburg Mining University, 21st Line, 2, St Petersburg, 199106 Russia
*Author for correspondence: Tatiana A. Gvozdenko, Email:


Black tourmalines from seven granitic pegmatites (Golodnaya, Kazennitsa, Mokrusha, Kopi Mora, Zheltyye Yamy, Buzheninov Bor and Ministerskaya) related to the Murzinka pluton, Central Urals, Russia have been investigated using electron microprobe analysis, LA-ICP-MS, Raman and Mössbauer spectroscopy. Pegmatites are hosted by serpentinites and gneisses and are classified as schorl, oxy-schorl, fluor-schorl, dravite, oxy-dravite, foitite, oxy-foitite and darrellhenryite. The possible compositional evolution of tourmalines from the Ural pegmatites is as follows: Mg-rich dravite through to Fe-rich schorl, foitite and oxy-foitite to Fe- and Mn-rich darrellhenryite. The major substitutions in the tourmalines are: (1) Fe2+ ↔ Mg; (2) Al + WO2– ↔ Fe2+ + WOH; (3) X-site vacancy + Al ↔ Na + Fe2+; (4) Al + WO2– ↔ Mg + WOH; (5) X-site vacancy + Al ↔ Na + Mg; and (6) Fe ↔ Mn. Statical processing of the trace- and major-element composition distinguished three tourmaline groups: (1) trace Co, Ni, Pb, and major Ca and Mg; (2) uni-, di- and trivalent traces (Li, Zn, Ga) and di- and trivalent majors (Al, Mn); (3) U, Th, Hf, Ta, Nb, Y, In, and Sn which correspond to tri-, tetra-, and pentavalent high-field-strength elements. Mössbauer data shows the Fe3+/Fe2+ ratios in tourmalines from pegmatites hosted by gneisses (0.05–0.18) and serpentinites (0.28–0.65), indicates different oxidising environments. Raman data are consistent with the composition of the tourmalines.

Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Associate Editor: Giancarlo Della Ventura


Bačík, P., Uher, P., Ertl, A., Jonsson, E., Nysten, P., Kanický, V. and Vaculovič, T. (2012) Zoned REE- enriched dravite from a granitic pegmatite in Forshammar Bergslagen Province, Sweden: an EMPA XRD and LA-ICP-MS study. The Canadian Mineralogist, 50, 825841.CrossRefGoogle Scholar
Baksheev, I.A., Vigasina, M.F., Yapaskurt, V.O., Bryzgalov, I.A. and Gorelikova, N.V. (2019) Tourmaline of the Solnechnoe tin deposit, Khabarovsk Krai, Russia. Mineralogical Magazine, 84, 245265.CrossRefGoogle Scholar
Castañeda, C., Oliveira, E.F., Gomes, N. and Soares, A.C.P. (2000) Infrared study of OH sites in tourmaline from darrellhenryite-schorl series. American Mineralogist, 85, 15031507.CrossRefGoogle Scholar
Černý, P. and Ercit, T.S. (2005) The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43, 20052026.CrossRefGoogle Scholar
Čerńy, P., Meintzer, R.E. and Anderson, A.J. (1985) Extreme fractionation in rare-element granitic pegmatites; selected examples of data and mechanisms. The Canadian Mineralogist, 23, 381421.Google Scholar
Codeço, M.S., Weis, P., Trumbull, R.B., Hinsberg, V.V., Pinto, F., Lecumberri-Sanchez, P. and Schleicher, A.M. (2021) The imprint of hydrothermal fluids on trace-element contents in white mica and tourmaline from the Panasqueira W–Sn–Cu deposit, Portugal. Mineralium Deposita, 56, 481508.CrossRefGoogle Scholar
Dyar, M.D., Taylor, M.E., Lutz, T.M., Francis, C.A., Guidotti, C.V. and Wise, M. (1998) Inclusive chemical characterization of tourmaline: Mossbauer study of Fe valence and site occupancy. American Mineralogist, 83, 848864.CrossRefGoogle Scholar
Dyar, M.D., Guidotti, C.V., Core, D.P., Wearn, K.M., Wise, M.A., Francis, C.A., Johnson, K., Brady, J.B., Robertson, J. D. and Cross, L.R. (1999) Stable isotope and crystal chemistry of tourmaline across pegmatite – country rock boundaries at Black Mountain and Mount Mica, southwestern Maine, U.S.A. European Journal of Mineralogy, 11, 281294.CrossRefGoogle Scholar
Emlin, E.F., Vakhrusheva, N.V. and Kainov, V.I. (2002) The Semi-Precious Belt of the Urals. The Rezh Natural-Mineralogical Reserve, AT-group, Ekaterinburg, Russia, 160 pp. [in Russian].Google Scholar
Ertl, A., Hughes, J.M., Prowatke, S., Ludwig, T., Prasad, P.S.R., Brandstätter, F., Körner, W., Schuchuchuster, R., Pertlik, F. and Marschall, H. (2006) Tetrahedrally coordinated boron in tourmalines from the liddicoatite–darrellhenryite series from Madagascar: structure, chemistry, and infrared spectroscopic studies. American Mineralogist, 91, 18471856.CrossRefGoogle Scholar
Fantini, C., Tavares, M.C., Krambrock, K., Moreira, R.L. and Righi, A. (2014) Raman and infrared study of hydroxyl sites in natural uvite, fluor-uvite, magnesio-foitite, dravite and darrellhenryite tourmalines. Physics and Chemistry of Minerals, 41, 247254.CrossRefGoogle Scholar
Fershtater, G.B. and Borodina, N.S. (2018) Murzinka massive at the Middle Urals as an example of the interformational granite pluton: magmatic sources, geochemical zonality, peculiarities of formation. Lithosphere, 5, 672691 [in Russian].CrossRefGoogle Scholar
Fersman, A.E. (1962) Precious and Coloured Stones of USSR. Selected Works, USSR Academy of Sciences, Moscow, vol. V., 858 pp. [in Russian].Google Scholar
Galbraith, C.G., Clarke, B., Trumbull, R.B. and Wiedenbeck, M. (2009) Assessment of tourmaline compositions as an indicator of emerald mineralization at the Tsa da Glisza prospect, Yukon territory, Canada. Economic Geology, 104, 713731.CrossRefGoogle Scholar
Gaweda, A., Pieczka, A. and Kraczka, J. (2002) Tourmalines from the Western Tatra Mountains (W-Carpathians, S-Poland): Their characteristics and petrogenetic importance. European Journal of Mineralogy, 14, 943955.CrossRefGoogle Scholar
Gonzalez-Carreño, T., Fernandez, M. and Sanz, J. (1988) Infrared and electron microprobe analysis in tourmalines. Physics and Chemistry of Minerals, 15, 452460.CrossRefGoogle Scholar
Gurkov, I.A. (2000) The Mokrusha pegmatite vein. Uralsky Geologichesky Zhurnal, 6, 4798 [in Russian].Google Scholar
Gvozdenko, T.A., Baksheev, I.A., Gerasimova, E.I., Khanin, D.A., Chervyakovskaya, M.V. and Yapaskurt, V.O. (2020) New data on chemical composition of lithium micas from granitic pegmatites of Murzinka pluton, Central Urals, Russia. Moscow University Bulletin. Series 4. Geology, 3, 8188.CrossRefGoogle Scholar
Harlaux, M., Kouzmanov, K., Gialli, S., Laurent, O., Rielli, A., Dini, A., Chauvet, A., Menzies, A., Kalinaj, M. and Fontboté, L. (2020) Tourmaline as a tracer of late-magmatic to hydrothermal fluid evolution: the world-class San Rafael tin (-copper) deposit, Peru. Economic Geology, 115, 16651697.CrossRefGoogle Scholar
Henry, D.J. and Dutrow, B.L. (1996) Metamorphic tourmaline and its petrologic applications. Pp. 503557 in: Boron: Mineralogy, Petrology and Geochemistry (Grew, E.S. and Anvitz, L.M., editors). Reviews in Mineralogy, 33. Mineralogical Society of America, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Henry, D.J. and Dutrow, B.L. (2018) Tourmaline studies through time: contributions to scientific advancements. Journal of Geosciences, 63, 7798.CrossRefGoogle Scholar
Henry, D.J. and Guidotti, C.V. (1985) Tourmaline as a petrogenetic indicator mineral: an example from the staurolite-grade metapelites of NW Maine. American Mineralogist, 70, 115.Google Scholar
Henry, D.J., Novák, M., Hawthorne, F, Ertl, A., Dutrow, B., Uher, P. and Pezzotta, F. (2011) Nomenclature of the tourmaline-supergroup minerals. American Mineralogist, 96, 895913.CrossRefGoogle Scholar
Hoang, L.H., Hien, N.T., Chen, X.B., VanMinha, N. and Yang, I. (2011) Raman spectroscopic study of various types of tourmalines. Journal of Raman Spectroscopy, 42, 14421446.CrossRefGoogle Scholar
Jolliff, B.L., Papike, J.J. and Shearer, C.K. (1986) Tourmaline as a recorder of pegmatite evolution; Bob Ingersoll pegmatite, Black Hills, South Dakota. American Mineralogist, 71, 472500.Google Scholar
Jolliff, B.L., Papike, J.J. and Laul, J.C. (1987) Mineral recorders of pegmatite internal evolution: REE contents of tourmaline from the Rob Ingersoll pegmatite, South Dakota. Geochimica et Cosmochimica Acta, 51, 22252232.CrossRefGoogle Scholar
Kanonerov, A.A. and Chudinova, N.D. (2000) Murzinka Precious Mines. Ural State Mining University press, Ekaterinburg, Russia, 41 pp. [in Russian].Google Scholar
Kievlenko, E.Ya. (2003) Geology of Gems. Ocean Pictures Ltd, Littleton, 468 pp.Google Scholar
Lichtervelde, M.V., Grégoire, M., Béziat, D., Linnen, R. and Salvi, S. (2008) Trace element geochemistry by laser ablation ICP-MS of tourmaline and micas associated with Ta mineralization in the Tanco pegmatite, Manitoba, Canada. Contributions to Mineralogy and Petrology, 155, 791806.CrossRefGoogle Scholar
London, D. (2008) Pegmatites. The Canadian Mineralogist Special Publication, 10, 1347.Google Scholar
Makvandi, S., Beaudoin, G., McClenaghan, M.B., Quirt, D. and Ledru, P. (2019) PCA of Fe-oxides MLA data as an advanced tool in provenance discrimination and indicator mineral exploration: Case study from bedrock and till from the Kiggavik U deposits area (Nunavut, Canada). Journal of Geochemical Exploration, 197, 199211.CrossRefGoogle Scholar
Marks, M.A.W., Marschall, H.R., Schühle, P., Guth, A., Wenzel, T., Jacob, D.E., Barth, M. and Markl, G. (2013) Trace element systematics of tourmaline in pegmatitic and hydrothermal systems from the Variscan Schwarzwald (Germany): The importance of major element composition, sector zoning, and fluid or melt composition. Chemical Geology, 344, 7390.CrossRefGoogle Scholar
Montero, P., Bea, F., Gerdes, A., Fershtater, G., Zin'kova, E., Borodina, N., Osipova, T and Smirnova, V. (2000) Single-zircon evaporation ages and Rb-Sr dating of four major Variscan batholiths of the Urals. A perspective on the timing of deformation and granite generation. Tectonophysics, 317, 93108.CrossRefGoogle Scholar
Novák, M., Škoda, R., Filip, J., Macek, I. and Vaculovič, T. (2011) Compositional trends in tourmaline from intragranitic NYF pegmatites of the Třebíč Pluton, Czech Republic: an electron microprobe, Mössbauer and LA–ICP–MS study. The Canadian Mineralogist, 49, 359380.CrossRefGoogle Scholar
Novák, M., Ertl, A., Povondra, P., Galiová, M.V., Rossman, G.R., Pristacz, H., Prem, M., Giester, G., Gadas, P. and Škoda, R. (2013) Darrellhenryite, Na(LiAl2)Al6(BO3)3Si6O18(OH)3O, a new mineral from the tourmaline supergroup. American Mineralogist, 98, 18861892.CrossRefGoogle Scholar
Novák, M., Prokop, J., Losos, Z. and Macek, I. (2017) Tourmaline, an indicator of external Mg-contamination of granitic pegmatites from host serpentinite; examples from the Moldanubian Zone, Czech Republic. Mineralogy and Petrology, 111, 625641.CrossRefGoogle Scholar
Ogorodnikov, V.N., Polenov, Yu.A., Kisin, A. Yu. and Savichev, A.N. (2020) Granitic Pegmatites and Pegmatoids of the Urals. Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia, 432 pp. [in Russian].Google Scholar
Oliveira, E.F., Castañeda, C., Eeckhout, S.G., Gilmar, M.M., Kwitko, R.R., Grave, E.D. and Botelho, N.F. (2002) Infrared and Mössbauer study of Brazilian tourmalines from different geological environments. American Mineralogist, 87, 11541163.CrossRefGoogle Scholar
Pekov, I.V. and Memetova, L.R. (2008) Minerals of Lipovka granite pegmatites, Central Urals. In the World of Minerals, Mineralogical Almanac, 13, 744.Google Scholar
Pekov, I.V., Yakubovich, O.V., Massa, W., Chukanov, N.V., Kononkova, N.N., Agakhanov, A.A. and Karpenko, V.Yu. (2010) Londonite from the Urals, and new aspects of the crystal chemistry of the rhodizite-londonite series. The Canadian Mineralogist, 48, 241254.CrossRefGoogle Scholar
Pezzotta, F. and Jobin, M. (2003) The Anjahamiary pegmatite, Fort Dauphin area, Madagascar. Short article available from the Mineralogical Society of America at Scholar
Pieczka, A., Gołębiowska, B., Stachowicz, M., Nejbert, K., Kotowski, J., Jeleń, P., Ertl, A. and Woźniak, K. (2022) Estimation of Li and OH contents in (Li,Al)-bearing tourmalines from Raman spectra. Mineralogy and Petrology, 116, 229249.CrossRefGoogle Scholar
Popov, V.A. and Popova, V.I. (1999) Mokrusha Mine: Essay on Development History and Mineralogy. Ural branch of Russian Academy of Sciences, Miass, Russia, 71 pp. [in Russian].Google Scholar
Popova, V.I., Popov, V.A. and Kanonerov, A.A. (2002) Murzinka: Alabashka Pegmatite Field. Mineralogical Almanac, 5, 136 pp.Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) “PAP” procedure for improved quantitative microanalysis. Pp.104106 in: Microbeam Analysis (Armstrong, J.T., editor). San Francisco Press, San Francisco.Google Scholar
Proctor, K. (1985) Gem pegmatites of Minas Gerais, Brazil: the tourmalines of the Aracuai districts. Gems and Gemology, 21, 319.CrossRefGoogle Scholar
Roda-Robles, E., Pesquera, A., Gil, P.P., Torres-Ruiz, J. and Fontan, F. (2004) Tourmaline from the rare-element Pinilla pegmatite, (Central Iberian Zone, Zamora, Spain): chemical variation and implications for pegmatitic evolution. Mineralogy and Petrology, 81, 249263.CrossRefGoogle Scholar
Roda-Robles, E., Simmons, W., Pesquera, A., Gil-Crespo, P.P., Nizamoff, J. and Torres-Ruiz, J. (2015) Tourmaline as a petrogenetic monitor of the origin and evolution of the Berry-Havey pegmatite (Maine, U.S.A.). American Mineralogist, 100, 95109.CrossRefGoogle Scholar
Roda, E., Pesquera, A. and Velasco, F. (1995) Tourmaline in granitic pegmatites and their country rocks, Fregeneda area, Salamanca, Spain. The Canadian Mineralogist, 33, 835848.Google Scholar
Rozhdestvenskaya, I.V., Setkova, T.V., Vereshchagin, O.S., Shtukenberg, A.G. and Shapovalov, Yu. B. (2012) Refinement of the crystal structures of synthetic nickel- and cobalt-bearing tourmalines. Crystallography Reports, 57, 1, 5763.CrossRefGoogle Scholar
Selway, J.B., Novak, M., Čerńy, P. and Hawthorne, F.C. (1999) Compositional evolution of tourmaline in lepidolite-subtype pegmatites. European Journal of Mineralogy, 11, 569584.CrossRefGoogle Scholar
Selway, J.B., Čerńy, P., Hawthorne, F.C. and Novak, M. (2000) The Tanco pegmatite at Bernic lake, Manitoba. XIY. Internal tourmaline. The Canadian Mineralogist, 38, 877891.CrossRefGoogle Scholar
Silva, S.F., Moura, M.A., Queiroz, H.A. and Ardisson, J.D. (2018) Chemical and spectroscopic characterization of tourmalines from the Mata Azul pegmatitic field, Central Brazil. Journal of Geosciences, 63, 155165.CrossRefGoogle Scholar
Simmons, W.B., Falster, A.U. and Laurs, B.M. (2011) A survey of Mn-rich yellow tourmaline from worldwide localities and implications for the petrogenesis of granitic pegmatites. The Canadian Mineralogist, 49, 301319.CrossRefGoogle Scholar
Skogby, H., Bosi, F. and Lazor, P. (2012) Short-range order in tourmaline: a vibrational spectroscopic approach to darrellhenryite. Physics and Chemistry of Minerals, 39, 811816.CrossRefGoogle Scholar
Talantsev, A.S. (1988) Pocket Pegmatites of the Urals. Nauka, Moscow, Russia, 144 pp. [in Russian].Google Scholar
Tindle, A.G., Breaks, F.W. and Selway, J.B. (2002) Tourmaline in petalite-subtype granitic pegmatites: Evidence of fractionation and contamination from the Pakeagama Lake and Separation Lake areas of northwestern Ontario, Canada. The Canadian Mineralogist, 40, 753788.CrossRefGoogle Scholar
van Hinsberg, V.J. (2011) Preliminary experimental data on trace-element partitioning between tourmaline and silicate melt. The Canadian Mineralogist, 49, 153163.CrossRefGoogle Scholar
Vereshchagin, O.S., Setkova, T.V., Rozhdestvenskaya, I.V., Frank-Kamenetskaya, O.V., Deyneko, D.V. and Pokholok, K.V. (2016) Synthesis and crystal structure of Ga-rich, Fe-bearing tourmaline. European Journal of Mineralogy, 28, 593599.CrossRefGoogle Scholar
Vereshchagin, O.S., Wunder, B., Britvin, S.N., Frank-Kamenetskaya, O.V., Wilke, F.D.H., Vlasenko, N.S. and Shilovskikh, V.V. (2020) Synthesis and crystal structure of Pb-dominant tourmaline. American Mineralogist, 105, 15891592.Google Scholar
Vereshchagin, O.S., Britvin, S.N., Wunder, B., Frank-Kamenetskaya, O.V., Wilke, F.D.H., Vlasenko, N.S., Shilovskikh, V.V., Bocharov, V.N. and Danilov, D.V. (2021) Ln3+ (Ln3+ = La, Nd, Eu, Yb) incorporation in synthetic tourmaline analogues: Towards tourmaline REE pattern explanation. Chemical Geology, 584, 120526.CrossRefGoogle Scholar
Watenphul, A., Burgdorf, M., Schlüter, J., Horn, I., Malcherek, T. and Mihailova, B. (2016a) Exploring the potential of Raman spectroscopy for crystallochemical analyses of complex hydrous silicates: II. Tourmalines. American Mineralogist, 101, 970985.CrossRefGoogle Scholar
Watenphul, A., Schlüter, J., Bosi, F., Skogby, H., Malcherek, T. and Mihailova, B. (2016b) Influence of the octahedral cationic-site occupancies on the framework vibrations of Li-free tourmalines, with implications for estimating temperature and oxygen fugacity in host rocks. American Mineralogist, 101, 25542563.CrossRefGoogle Scholar
Zhou, Q., Qin, K., Tang, D., Wang, C., Tian, Y. and Sakyi, P.S. (2015) Mineralogy of the Koktokay No. 3 pegmatite, Altai, NW China: implications for evolution and melt-fluid processes of rare-metal pegmatites. European Journal of Mineralogy, 27, 433457.CrossRefGoogle Scholar