Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-24T15:46:59.088Z Has data issue: false hasContentIssue false

Fluid inclusion study of tin-mineralized greisens and quartz veins in the Penouta apogranite (Orense, Spain)*

Published online by Cambridge University Press:  05 July 2018

J. Mangas
Affiliation:
Department of Geology, Faculty of Marine Sciences, University of Las Palmas de Gran Canaria, Campus de Tafira, 35017 Las Palmas de Gran Canaria (Spain)
A. Arribas
Affiliation:
Directorate-General XII, Science, Research and Development, Commission of the European Communities, Rue de la Loi 200, B-1049 Brussels, Belgium

Abstract

The Penouta deposit is associated with a small Hercynian apogranite stock that intrudes Precambrian-Cambrian gneisses of the Ollo de Sapo Formation. Tin ore occurs as disseminations of cassiterite in the apogranite and as greisenized zones and quartz veins which traverse both the alkaline leucogranite and the surrounding metamorphic country rocks.

A fluid-inclusion study, utilizing microthermometric, crushing tests and Raman spectroscopic techniques on quartz from an intragranitic vein and a greisen of the host rock, indicates that the evolution of fluids was similar in both samples and occurred in the three main stages: The first stage is characterized by complex CO2 (CO2-N2-CH4-H2S) and complex CO2 aqueous (H2O-NaCl-CO2-N2-CH4-H2S) fluids of low salinity (Tm ice > −6°C), homogenization temperatures between 250 and 410°C homogenization pressures below 900 bars, and thermobarometric trapping conditions with temperatures below 700°C and pressures below 3250 bars. These fluids were probably responsible for the greisenization of the apogranite and wall rocks, and the precipitation of cassiterite. The second stage is represented by low-salinity aqueous solutions (H2O-NaCl) with Tm ice ⩾ −4.5°C, trapped at homogenization temperatures between 110 and 300 °C and homogenization pressures below 100 bars. This stage can be correlated with kaolinization. The third stage is characterized by higher salinity aqueous fluids (Tm ice ⩾ −16.5°C) containing Na+ and other cations, trapped at homogenization temperatures between 100 and 130°C and homogenization pressures below 5 bars. These fluids can be associated with the epigenetic or supergene phases of the orebody.

Type
Fluid Inclusion Studies
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angus, S., Armstrong, K. M., de Reuck, V. V., Altunin, O. G., Chapela, G. A., and Rowlinson (1976) International thermodynamic Tables of the fluid state. Vol. 3, Carbon dioxide: Pergamon Press. Oxford, England, 385 pp.Google Scholar
Arribas, A. (1979) Mineral paragenesis in the Variscan metallogeny of Spain. Stud. Geol., 14, 223-60.Google Scholar
Bergman, S. C. (1982) Petrogenetic aspects of the alkaline basaltic lavas and included megacrystals and nodules from the lunar crater volcanic field, Nevada, USA. Ph.D. dissertation Princeton University. Princeton N.J. (unpublished).Google Scholar
Beus, A. A. (1967) Geochemical analysis of the phenomena of high-temperature postmagmatic metasomatism and ore formation in granitoids. In Chemistry of the Earth's crust (Vinogradov, ed.) Israel program Sci. Transl. Jerusalem, vol. 1, 186204.Google Scholar
Bodnar, R. J. (1983) A method of calculating fluid-inclusion volumes based on vapor bubble diameters and P-V-T-Xproperties of fluid inclusions. Econ. Geol., 78, 535–2.CrossRefGoogle Scholar
Bristow, C. M. (1977) A review of the evidence for the origin of the kaolin deposits in Southwest England. Proc. 8th Intern. Kaol. Symp. Meet, on alunite, 119.Google Scholar
Cathelineau, M., Marignac, C, Dubessy, J., Poty, B., Weisbrod, A., Ramboz, C, and Leroy, J. (1988) Fluids in granitic environment. Rend. Soc. hi. Mineral. Petrol, 43-2, 263-74.Google Scholar
Capote, R. (1983) Formaciones porfiroides. Libro Jubilar de J. M. Rios. Geologia de España. Ed. Inst. Geol. Min. de España, Madrid, 8491.Google Scholar
Charoy, B. (1979) Définition et importance des phéno-mènes deutériques et des fluides associés dans les granites. Conséquences métallogeneniques. Sci. de la Terre, Nancy, Francia, Mém. no. 37, 364 pp.Google Scholar
Collins, P. L. F. (1979) Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity. Econ. Geol., 74, 1435-14.CrossRefGoogle Scholar
Crawford, M. L., Filer, J., and Wood, C. (1979) Saline fluid inclusions associated with retrograde metamorphism. Bull. Min., 102, 562–8.CrossRefGoogle Scholar
Dhamelincourt, P., Beny, J. M., Dubessy, J., and Poty, B. (1979) Analyse d'inclusions fluides à la microsonde MOLE à effet Raman. Bull. Soc. Franc. Min. Crist., 102, 600-10.Google Scholar
Dubessy, J., Ramboz, C., Nguyen-Trung, C., Cathelineau, M., Charoy, B., Cuney, M., Leroy, J., Poty, B., and Weisbrod, A. (1987) Physical and chemical controls (fo2, T,, pH) of the opposite behaviour of U and Sn-W as exemplified by hydro-thermal deposits in France and Great Britain, and solubility data. Bull. Minéral., 110, 261-81.CrossRefGoogle Scholar
Durisova, J. (1978) Geothermometry in the minerals from the tin-ore deposit (G.D.R.) by means of gas-liquid inclusions. Z. Angew. Geol. D.D.R., 20, 352-63.Google Scholar
Durisova, J. (1988) Diversity of fluids in the formation of ore assemblages in the Bohemian Massif (Czechoslovakia). Bull. Minéral., 111, 477-92.Google Scholar
Eadington, P. J. (1983) A fluid inclusion investigation of ore formation in a tin-mineralized granite. New England, New South Wales. Econ. Geol., 78, 1204-21.CrossRefGoogle Scholar
Eugster, H. P. and Wilson, G. A. (1985) Transport and deposition of ore-forming elements in hydrothermal systems associated with granite. In H.H.P. granites, hydrothermal circulation and ore genesis, Inst. Mining Metall. 8798.Google Scholar
Fisher, J. R. (1976) The volumetric properties of H2O-a graphical portrayal. J. Res. U.S. Geol. Surv., 4, 189-93.Google Scholar
Gehrig, M. (1980) Phasengleichgewichte und PVT daten ternärer mischungen aus wasser, kohlendioxid und natriumchlorid bis 3 Kbar und 550°C. Thesis, Institute of Physical Chemistry, University of Karlsruhe, Karlsruhe (unpublished).Google Scholar
Goncharov, V. I. and Voronstsova, L. A. (1976) Hydrothermal solution compositions for some Yakutian tin deposits. Geoch. Inst., 13, no. 5, 2733.Google Scholar
Halley, S., Salomon, M., and Higgins, N. C. (1984) Pressure, temperature and source conditions for the fluids of the Aberfoile (Tasmania) tin tungsten vein system. 27 Congr. Int. Geol. (Moscow). Abstr., vol. IV (sect. 8-9). 55-6.Google Scholar
Iglesias, M. and Varca, R. (1981) Mem. del Mapa Geol., no. 228, 1:50000. Serv. Public. Inst. Geol. Min. España.Google Scholar
Jackson, N. J., Moore, J. Me. M., and Rankin, A. H. (1977) Fluid inclusions and mineralization at Cligga Head, Cornwall, England, J. Geol. Soc. London, 80, 1365-78.Google Scholar
Jackson, K. J. and Helgeson, H. C. (1985) Chemical and thermodynamic constraints on the hydrothermal transport and deposition of tin: calculation of the solubility of cassiterite at high pressures and temperatures. Geochim. Cosmochim. Acta, 49, 122.CrossRefGoogle Scholar
Leroy, J. (1978) Metallogenése des gisement d'uranium de la division de la Crouzille. (Cogema-Nord Limousin, France). Memor. Sci. de la Terre, Nancy, France. Mém. no. 36, 276 pp.Google Scholar
Mangas, J. (1981) Estudio microtermométrico del yaci-miento de Golpejas (Salamanca). Tesis Licenciatura, Universidad de Salamanca, Salamanca, 103 pp. (unpublished).Google Scholar
Mangas, J. (1987) Estudio de las inclusiones fluidas en los yacimientos españoles de estaño asociados a granitos hercinicos. Tesis Doctoral, Universidad de Salamanca, Salamanca, 644 pp. (unpublished).Google Scholar
Mangas, J. and Arribas, A. (1984) Evolution y caracteristicas de las fases fluidas asociadas a los filones de cuarzo del yacimiento estannifero de Golpejas (Salamanca). I Congreso Español de Geologia, Segovia, 2, 551-64.Google Scholar
Naumov, V. S. and fvanova, G. F. (1971) The pressure and temperature conditions’ for formations of wolframite deposit. Geochim. Intern., 8, no. 3, 381-93.Google Scholar
Potter, R. W., Clinne, M. A., and Brown, D. L. (1978) Freezing point depression of aqueous sodium chloride solution. Econ. Geoi, 73, 284–5.CrossRefGoogle Scholar
Poty, B., Leroy, J., and Jachimowicz, L. (1976) Un nouvel appareil pour la measure des températures sous le microscope: l'installation de microthermométrie chaix-meca. Bull. Soc. Fr. Minéral. Cristall, 99, 182–6.Google Scholar
Ramboz, C. (1980) Geochimie et etude des phases fluides de gisements et indices d'etain-tungstène du Sud du Massif Central (France). These de 3éme cycle. Nancy. 278 pp. (unpublished).Google Scholar
Ramboz, C., Schanpper, D., and Dubessy, J. (1985) The P-V-T-X-fe evolution of H2O-CO2-CH4-bearing fluid in a wolframite vein: reconstruction from fluid inclusion studies. Geochim. Cosmochim. Acta, 49, 205-19.CrossRefGoogle Scholar
Roedder, E. (1984) Fluid inclusions. Reviews in Mineralogy, 12, Mineral. Soc. Amer., Blacksburg, Va, 644 pp.CrossRefGoogle Scholar
Scherba, G. N. (1970) Greisens. Inst. Geol. Rev., 12, no. 2, 114-150, and no. 3, 239-55.CrossRefGoogle Scholar
Sushchevskaya, T. M., Luchitskaya, M. I., Ryzhenko, B. N., and Barsukov, V. L. (1985) Acidity of the medium during hydrothermal cassiterite formation. Geoch. Int., 21. 7787.Google Scholar
Swanenberg, H. (1979) Phase equilibria in carbonic systems and their applications to freezing studiesof fluid inclusions. Contrib. Mineral. Petrol., 68, 303–6.CrossRefGoogle Scholar
Thomas, R. (1982) Ergebnisse der thermobarogeo-chemischen untersuchungcn and flüssigkeitsinschlüs-sen in mineralen der postmagmatischen tinn-wolfram-mineralization des Erzgebirges, Freiberg, Forschungsh., Reihe C., no. C370, 85 pp.Google Scholar
Thomas, R. Tugarinov, A. I. and Naumov, V. B. (1972) Physicochemical parameters of hydrothermal mineral formation. Geoch. Int., 9, no, 2, 161–7.Google Scholar
Volosov, A. G., Borisov, M. V., Sushchevskaya, T. M.. and Knyazeva, S. N. (1981) Deposition of cassiterite during formation of hydrothermal tin ore deposits according to the results of physico-chemical modelling. Geochem. Int., 18, 4966.Google Scholar