Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T10:09:40.624Z Has data issue: false hasContentIssue false

Cuyaite, Ca2Mn3+As3+14O24Cl, a new mineral with an arsenite framework from near Cuya, Camarones Valley, Chile.

Published online by Cambridge University Press:  27 April 2020

Anthony R. Kampf*
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA90007, USA
Stuart J. Mills
Affiliation:
Geosciences, Museums Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia
Barbara Nash
Affiliation:
Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah84112, USA
Maurizio Dini
Affiliation:
Pasaje San Agustin 4045, La Serena, Chile
Arturo A. Molina Donoso
Affiliation:
Los Algarrobos 2986, Iquique, Chile
*
*Author for correspondence: Anthony R. Kampf, Email: akampf@nhm.org

Abstract

Cuyaite (IMA2019-126), Ca2Mn3+As3+14O24Cl, is a new arsenite mineral from near Cuya in the Camarones Valley, Arica Province, Chile. It is associated with anhydrite, native arsenic, arsenolite, calcite, claudetite, ferrinatrite, gajardoite-3R, leiteite, magnesiocopiapite, phosphosiderite, pyrite, realgar and talmessite and formed from the oxidation of As-bearing primary phases and alteration by saline fluids derived from evaporating meteoric water under hyperarid conditions. Cuyaite occurs as pale brown thin needles (elongated on [010]), typically in divergent sprays and subparallel intergrowths. The streak is white. Crystals are transparent with adamantine lustre; subparallel intergrowths exhibit silky lustre. The mineral has Mohs hardness of 2½, is brittle, exhibits no cleavage and has irregular fracture. The calculated density is 4.140 g cm–3. Cuyaite is optically biaxial (–), with α = 1.87(1), β = 1.956(calc) and γ = 1.98(1), determined in white light; 2Vmeas = 60(1)°; and orientation: X = b and Y ^ a = 53° in obtuse β. Electron microprobe analyses provided the empirical formula Ca2.03Mn3+0.95(As3+13.66Sb3+0.65)Σ14.31O24Cl0.88. The six strongest powder X-ray diffraction lines are [dobs Å(I)(hkl)]: 4.73(45)(111, $\bar{1}$12), 3.162(100)($\bar{3}$14), 3.035(28)(213), 3.004(37)(204), 2.931(90)($\bar{2}$15, 312) and 2.779(28)(020). Cuyaite is monoclinic, Pn, a = 14.7231(6), b = 5.58709(19), c = 17.4185(12) Å, β = 112.451(8)°, V = 1324.23(14) Å3 and Z = 2. In the crystal structure of cuyaite (R1 = 0.0369 for 2095 I > 2σI reflections), AsO3 pyramids share O corners to form a ‘loose’ 3D framework; Jahn–Teller distorted Mn3+O6 octahedra and CaO8 polyhedra link by edges and corners to form columns; the columns also link by edge- and corner-sharing to the AsO3 pyramids in the framework; Cl occupies channels along [010] in the framework. The Raman spectrum is consistent with the presence of multiple As3+O3 groups.

Type
Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Irina O. Galuskina

References

Bahfenne, S. and Frost, R.L. (2010) A review of the vibrational spectroscopic studies of arsenite, antimonite, and antimonate minerals. Applied Spectroscopy Reviews, 45, 101129.CrossRefGoogle Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Cameron, E.M., Leybourne, M.I. and Palacios, C. (2007) Atacamite in the oxide zone of copper deposits in northern Chile: involvement of deep formation waters? Mineralium Deposita, 42, 205218.CrossRefGoogle Scholar
Gagné, O.C. and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Gunter, M.E., Bandli, B.R., Bloss, F.D., Evans, S.H., Su, S.C. and Weaver, R. (2004) Results from a McCrone spindle stage short course, a new version of EXCALIBR, and how to build a spindle stage. The Microscope, 52, 2339.Google Scholar
Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo, Japan.Google Scholar
Kampf, A.R., Mills, S.J., Nash, B.P., Housley, R.M., Rossman, G.R. and Dini, M. (2013a) Camaronesite, [Fe3+(H2O)2(PO3OH)]2(SO4)⋅1–2H2O, a new phosphate–sulfate from the Camarones Valley, Chile, structurally related to taranakite. Mineralogical Magazine, 77, 453465.CrossRefGoogle Scholar
Kampf, A.R., Sciberras, M.J., Leverett, P., Williams, P.A., Malcherek, T., Schlüter, J., Welch, M.D., Dini, M. and Molina Donoso, A.A. (2013b) Paratacamite-(Mg), Cu3(Mg,Cu)Cl2(OH)6: a new substituted basic copper chloride mineral from Camarones, Chile. Mineralogical Magazine 77, 31133124.CrossRefGoogle Scholar
Kampf, A.R., Mills, S.J., Housley, R.M., Rossman, G.R., Nash, B.P., Dini, M., and Jenkins, R. A. (2013c) Joteite, Ca2CuAl[AsO4][AsO3(OH)]2(OH)2(H2O)5, a new arsenate with a sheet structure and unconnected acid arsenate groups. Mineralogical Magazine 77, 28112823.CrossRefGoogle Scholar
Kampf, A.R., Nash, B.P., Dini, M. and Molina Donoso, A.A. (2016) Gajardoite, KCa0.5As3+4O6Cl2⋅5H2O, a new mineral related to lucabindiite and torrecillasite from the Torrecillas mine, Iquique Province, Chile. Mineralogical Magazine, 80, 12651272.CrossRefGoogle Scholar
Kampf, A.R., Nash, B.P., Celestian, A.J., Dini, M. and Molina Donoso, A.A. (2019) Camanchacaite, chinchorroite, espadaite, magnesiofluckite, picaite and ríosecoite: six new hydrogen-arsenate minerals from the Torrecillas mine, Iquique Province, Chile. Mineralogical Magazine, 83, 655671.CrossRefGoogle Scholar
Kampf, A.R., Nash, B., Dini, M. and Molina Donoso, A.A. (2020) Cuyaite, IMA 2019–126. CNMNC Newsletter No. 54; Mineralogical Magazine, 84, p. 364, https://doi.org/10.1180/mgm.2020.21Google Scholar
Majzlan, J., Drahota, P. and Filippi, M. (2014) Parageneses and crystal chemistry of arsenic minerals. Pp. 17184 in: Arsenic: Environmental Geochemistry, Mineralogy, and Microbiology (Bowell, R.J., Alpers, C.N., Jamieson, H.E., Nordstrom, D.K. and Majzlan, J., editors). Reviews in Mineralogy and Geochemistry, 79. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting mineral species for further study. The Canadian Mineralogist, 45, 13071324.CrossRefGoogle Scholar
Pouchou, J.-L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP.” Pp. 3l75 in: (eds), Electron Probe Quantitation (Heinrich, K.F.J. and Newbury, D.E., editors). Plenum Press, New York.Google Scholar
Salas, R.O. (1964) Breve informe de una visita realizada a los cateos de sulfato de hierro, en la zona de Cuya, Quebrada de Camarones, Arica. Instituto de Investigaciones Geológicas, Arica, Chile.Google Scholar
Salas, R.O. (1965) Informe preliminar de la Mina Minerva, Quebrada de Camarones, departamento de Arica. Instituto de Investigaciones Geológicas, Arica, Chile.Google Scholar
Sheldrick, G.M. (2015a) SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica, A71, 38.Google Scholar
Sheldrick, G.M. (2015b) Crystal structure refinement with SHELX. Acta Crystallographica, C71, 38.Google Scholar
Szymanski, H.A., Marabella, L., Hoke, J. and Harter, J. (1968) Infrared and Raman studies of arsenic compounds. Applied Spectroscopy, 22, 297304.CrossRefGoogle Scholar
Thomas, A. (1971) Geología del área de Chilpe, Camarones – Arica. La Empresa Nacional de Minería (ENAMI), Santiago, Chile.Google Scholar
Supplementary material: File

Kampf et al. supplementary material

Table S1

Download Kampf et al. supplementary material(File)
File 49.9 KB
Supplementary material: File

Kampf et al. supplementary material

Kampf et al. supplementary material

Download Kampf et al. supplementary material(File)
File 520.7 KB