Hostname: page-component-7d684dbfc8-7nm9g Total loading time: 0 Render date: 2023-09-27T08:57:48.714Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

The crystal structure of khinite and polytypism in khinite and parakhinite

Published online by Cambridge University Press:  05 July 2018

M. A. Cooper
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
F. C. Hawthorne*
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada, R3T 2N2
M. E. Back
Department of Earth Sciences, Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario, Canada M5S 2C6


The crystal structure of khinite, Pb2+Cu2+3Te6+O6(OH)2, orthorhombic, a = 5.7491(10), b = 10.0176(14), c = 24.022(3) Å, V = 1383.6(4) Å3, space group Fdd2, Z = 8, Dcalc = 6.29 g/cm3, from the Empire mine, Tombstone, Arizona, USA, has been solved by direct methods and refined to R1 = 3.2% on the basis of 636 unique observed reflections. There is one distinct Te site occupied by Te and coordinated by six O atoms in an octahedral arrangement with a <Te–O> distance of 1.962 Å. typical of Te6+. There are three octahedrally-coordinated Cu sites, each of which is occupied by Cu2+ with <Cu–O> distances of 2.132, 2.151 and 2.308 Å, respectively. Each Cu octahedron shows four short meridional bonds (~1.95 Å) and two long apical bonds (2.46–2.99 Å) characteristic of Jahn-Teller-distorted Cu2+ octahedra. There is one distinct Pb site occupied by Pb and coordinated by six O atoms and two (OH) groups with a <Pb–O, OH> distance of 2.690 Å. TeF6 and CuΦ6 octahedra share edges and corners to form an [MΦ2] (where Φ = O, OH) layer of composition [TeCu3Φ8]. These layers stack along the c axis at 6 A intervals with Pb atoms between the layers. Identical layers occur in the structure of parakhinite, Pb2+Cu2+Te6+O6(OH)2, hexagonal, a = 5.765(2), c = 18.001(9) Å, V =518.0(4) Å3, space group P32, Z = 3, Dcalc = 6.30 g/cm3. It is only the relative stacking of the TeCu3Φ8 layers in the c direction that distinguishes the two structures, and hence khinite and parakhinite are polytypes.

Research Article
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Back, M.E., Grice, J.D., Gault, R.A., Criddle, A.J. and Mandarino, J.A. (1999) Walfordite, a new tellurite species from the Wendy open pit mine, El Indio — Tambo mining property, Chile. The Canadian Mineralogist, 37, 12611268.Google Scholar
Barrier, N., Malo, S., Hernandez, O., Hervieu, M. and Raveau, B. (2006) The mixed valent tellurate SrTe3O8: Electronic lone pair effect of Te4+ . Journal of Solid State Chemistry, 179, 34843488.CrossRefGoogle Scholar
Becker, R. and Berger, H. (2006) Reinvestigation of Ni3TeO6 . Ada Crystallographica, E62, i222-i223.Google Scholar
Bindi, L. and Cipriani, C. (2003) The crystal structure of winstanleyite, TiTe3O8, from the Grand Central Mine, Tombstone, Arizona. The Canadian Mineralogist, 41, 14691473.CrossRefGoogle Scholar
Brown, I.D. (1981) The bond-valence method: an empirical approach to chemical structure and bonding. Pp. 130 in: Structure and Bonding in Crystals II (M. O'Keeffe and A. Navrotsky, editors). Academic Press, New York.Google Scholar
Brown, I.D. (2002) The Chemical Bond in Inorganic Chemistry. The Bond Valence Model. Oxford University Press, New York.Google Scholar
Burns, P.C. and Hawthorne, F.C. (1995) Mixed-ligand Cu + 6 octahedra in minerals: observed stereochemistry and Hartree-Fock calculations. The Canadian Mineralogist, 33, 11771188.Google Scholar
Burns, P.C. and Hawthorne, F.C. (1996) Static and dynamic Jahn-Teller effects in Cu2+ oxysalt minerals. The Canadian Mineralogist, 34, 10891105.Google Scholar
Burns, P.C, Cooper, M.A. and Hawthorne, F.C. (1995) Parakhinite, Cul+PbTe6+O6(OH)2: crystal structure and revision of the chemical formula. The Canadian Mineralogist, 33, 3340.Google Scholar
Cooper, M.A. and Hawthorne, F.C. (1995) The crystal structure of guilleminite, a hydrated Ba-U-Se sheet structure. The Canadian Mineralogist, 33, 11031109.Google Scholar
Cooper, M.A. and Hawthorne, F.C. (1996) The crystal structure of spiroffite. The Canadian Mineralogist, 34,821826.Google Scholar
Cooper, M.A. and Hawthorne, F.C. (2001) Structure topology and hydrogen bonding in marthozite, Cu2+[(UO2)3(SeO3)2O2](H2O)8, a comparison with guilleminite, Ba [(UO2)3 (SeO3)2O2](H2O)3 . The Canadian Mineralogist, 39, 797807.CrossRefGoogle Scholar
Daniel, F., Moret, J., Philippot, E. and Maurin, M. (1977) Etude structurale de Li2TeO4. Coordination du tellure VI et du lithium par les atomes d'oxygene. Journal of Solid State Chemistry, 22, 113119.CrossRefGoogle Scholar
Eby, R.K. and Hawthorne, F.C. (1993) Structural relations in copper oxysalt minerals. I. Structural hierarchy. Ada Crystallographica, B49, 2856.Google Scholar
Effenberger, H. (1977) Verfeinerung der Kristallstruktur von synthetischem Teineit CuTeO3(H2O)2 . Tschermaks Mineralogische und Petrographische Mitteilungen, 24, 287298.CrossRefGoogle Scholar
Falck, L., Lindqvist, O. and Mark, W. (1978) The crystal structure of CuTeO4 . Ada Crystallographica, B34, 14501453.Google Scholar
Galy, J. and Meunier, G. (1971) A propos de la cliffordite UTe3O8. Le Systeme UO3-TeO2 a 700°C. Structure crystalline de UTe3O9 . Ada Crystallographica, B27, 608616.Google Scholar
Grice, J.D. (1989) The crystal structure of magnolite, Hg2 +Te4+O3 . The Canadian Mineralogist, 27, 133136.Google Scholar
Grice, J.D. and Roberts, A.C. (1995) Frankhawthorneite, a unique HCP framework structure of a cupric tellurate. The Canadian Mineralogist, 33, 649653.Google Scholar
Grice, J.D., Groat, L.A. and Roberts, A.C. (1996) Jensenite, a cupric tellurate framework structure with two coordinations of copper. The Canadian Mineralogist, 34, 5559.Google Scholar
Hawthorne, F.C. (1984) The crystal structure of mandarinoite, Fe2 +Se3O9.6H2O. The Canadian Mineralogist, 22, 475480.Google Scholar
Hawthorne, F.C, Ercit, T.S. and Groat, L.A. (1986) Structures of zinc selenite and copper selenite. Ada Crystallographica, C42, 12851287.Google Scholar
Hawthorne, F.C, Groat, L.A. and Ercit, T.S. (1987) Structure of cobalt diselenite. Ada Crystallographica, C43, 20422044.Google Scholar
Hottentot, D. and Loopstra, B.O. (1979) Structures of calcium tellurate, CaTeO4 and strontium tellurate, SrTeO4 . Ada Crystallographica, B35, 728729.Google Scholar
International Tables for X-ray Crystallography (1992) V.C Dordrecht, Kluwer Academic Publishers.Google Scholar
Jahn, H.A. and Teller, E. (1937) Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy. Proceedings of the Royal Society of London A — Mathematical and Physical Sciences, A161, 220235.Google Scholar
Klein, W., Curda, J., Peters, E.M. and Jansen, M. (2006) Ag2Te2O7, ein neues Silbertellurat mit Weberit-Struktur. Zeitschrift fur Anorganische und Allgemeine Chemie, 632, 15081513.CrossRefGoogle Scholar
Kratochvil, B. and Jensovsky, L. (1977) The crystal structure of sodium metatellurate. Ada Crystallographica, B33, 25962598.Google Scholar
Leciejewicz, J. (1961) The crystal structure of tellurium dioxide. Zeitshcrift fur Kristallographie, 116, 345.Google Scholar
Margison, S.M., Grice, J.D. and Groat, L.A. (1997) The crystal structure of leisingite, (Cu +,Mg,Zn)2(Mg,Fe)Te6+O6.6H2O. The Canadian Mineralogist, 35, 759763.Google Scholar
Meunier, G. and Galy, J. (1971) Sur une deformation inedite du reseau de type fluorine, structure cristal-line des phases MTe3O8 (M = Ti, Sn, Hf, Zr). Ada Crystallographica, B27, 602607.Google Scholar
Moret, J., Philippot, E., Maurin, M. and Lindqvist, O. (1974) Structure cristalline de l'acide tetraoxotellurique H2TeO4 . Ada Crystallographica, B30, 18131818.Google Scholar
Mueller-Buschbaum, H. and Wedel, B. (1996) Zur Kenntnis eines Barium-Oxoniobat-Tellurats: Ba2Nb2TeOio. Zeitschrift fur Naturforschung B — A Journal of Chemical Sciences, 51, 14071410.Google Scholar
Pertlik, F. (1972) Der Strukturtyp von Emmonsit, (Fe2(TeO3)3(H2O(H2O)x (x = 0–1). Tschermaks Mineralogische und Petrographische Mitteilungen, 18, 157168.CrossRefGoogle Scholar
Sheldrick, G.M. (1997) SHELX-97: Program for the solution and refinement of crystal structures. Siemens Energy and Automation, Madison, WI, USA.Google Scholar
Williams, S.A. (1978) Khinite, parakhinite, and dugganite, three new tellurates from Tombstone, Arizona. American Mineralogist, 63, 10161019.Google Scholar
Xu, J., Assoud, A., Soheilnia, N., Derakhshan, S., Cuthbert, H.L., Greedan, J.E., Whangbo, M.-H. and Kleinke, H. (2005) Synthesis, structure, and magnetic properties of the layered copper(II) oxide Na2Cu2TeO6 . Inorganic Chemistry, 44, 50425046.CrossRefGoogle ScholarPubMed