Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-25T13:13:48.141Z Has data issue: false hasContentIssue false

Cr-pyrope xenocrysts with oxide mineral inclusions from the Chompolo lamprophyres (Aldan shield): Insights into mantle processes beneath the southeastern Siberian craton

Published online by Cambridge University Press:  12 January 2022

Dmitriy I. Rezvukhin*
Affiliation:
Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk630090, Russia
Evgeny I. Nikolenko
Affiliation:
ALROSA (ZIMBABWE) Ltd., 19 Van Praagh Avenue, Milton Park, Harare, Zimbabwe
Igor S. Sharygin
Affiliation:
Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk630090, Russia Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences, Irkutsk664033, Russia
Olga V. Rezvukhina
Affiliation:
Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk630090, Russia
Maria V. Chervyakovskaya
Affiliation:
Zavaritsky Institute of Geology and Geochemistry UB RAS, Yekaterinburg, 620016, Russia
Andrey V. Korsakov
Affiliation:
Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk630090, Russia
*
*Author for correspondence: Dmitriy I. Rezvukhin, Email: m.rezvukhin@igm.nsc.ru, m.rezvukhin@gmail.com

Abstract

Pyrope xenocrysts (N = 52) with associated inclusions of Ti- and/or Cr-rich oxide minerals from the Aldanskaya dyke and Ogonek diatreme (Chompolo field, southeastern Siberian craton) have been investigated. The majority of xenocrysts are of lherzolitic paragenesis and have concave-upwards (normal) rare earth element (REEN) patterns that increase in concentration from light REE to medium–heavy REE (Group 1). Four Ca-rich (5.7–7.4 wt.% CaO) pyropes are extremely low in Ti, Na and Y and have sinusoidal REEN spectra, thus exhibiting distinct geochemical signatures (Group 2). A peculiar xenocryst, s165, is the only sample to show harzburgitic derivation, whilst demonstrating a normal-to-weakly sinusoidal REEN pattern and the highest Zr (93 ppm) and Sc (471 ppm). Chromite–magnesiochromite, rutile, Mg-ilmenite and crichtonite-group minerals comprise a suite of oxide mineral inclusions in the pyrope xenocrysts. These minerals are characteristically enriched in Cr with 0.6–7.2 wt.% Cr2O3 in rutile, 0.7–3.6 wt.% in Mg-ilmenite and 7.1–18.0 wt.% in the crichtonite-group minerals. Complex titanates of the crichtonite group enriched in large ion lithophile elements (LILE) are high in Al2O3 (0.9–2.2 wt.%), ZrO2 (1.5–5.4 wt.%) and display a trend of compositions from the Ca–Sr-specific varieties to the Ba-dominant species (e.g. lindsleyite). In the pyrope xenocrysts the oxides coexist with silicates (clino- and orthopyroxene and olivine), hydrous silicates (talc, phlogopite and amphibole), carbonate (magnesite), sulfides (pentlandite, chalcopyrite, breakdown products of monosulfide and bornite solid solutions), apatite and graphite. PT estimates imply the inclusion-bearing pyrope xenocrysts have been derived from low-temperature peridotite assemblages that resided at temperatures of ~600–800°C and a pressure range of ~25–35 kbar in the graphite stability field. Pyrope genesis is linked to the metasomatic enrichment of peridotite protoliths by Ca–Zr–LILE-bearing percolating fluid–melt phases containing significant volatile components. These metasomatic agents are probably volatile-rich melts or supercritical C–O–H–S fluids that were released from a Palaeo-subduction slab.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Makoto Arima

References

Agashev, A.M., Ionov, D.A., Pokhilenko, N.P., Golovin, A.V., Cherepanova, Y. and Sharygin, I.S. (2013) Metasomatism in lithospheric mantle roots: Constraints from whole-rock and mineral chemical composition of deformed peridotite xenoliths from kimberlite pipe Udachnaya. Lithos, 160–161, 201215.CrossRefGoogle Scholar
Alifirova, T.A., Pokhilenko, L.N., Ovchinnikov, Y.I., Donnelly, C.L., Riches, A.J.V. and Taylor, L.A. (2012) Petrologic origin of exsolution textures in mantle minerals: evidence in pyroxenitic xenoliths from Yakutia kimberlites. International Geology Review, 54, 10711092.10.1080/00206814.2011.623011CrossRefGoogle Scholar
Alifirova, T., Rezvukhin, D., Nikolenko, E., Pokhilenko, L., Zelenovskiy, P., Sharygin, I., Korsakov, A. and Shur, V. (2020) Micro-Raman study of crichtonite group minerals enclosed into mantle garnet. Journal of Raman Spectroscopy, 51, 14931512.CrossRefGoogle Scholar
Ashchepkov, I.V., Vladykin, N.V., Saprykin, A.I., Khmelnikova, O.S. and Anoshin, G.N. (2001) Composition and thermal structure of the mantle in peripheral parts of Siberian craton. Revista Brasileira de Geociências, 31, 527536.CrossRefGoogle Scholar
Aulbach, S. (2018) Cratonic lithosphere discontinuities: dynamics of small-volume melting, metacratonization, and a possible role for brines. Pp. 177203 in: Lithospheric Discontinuities, Geophysical Monograph 239 (Yuan, H. and Romanowicz, B., editors).CrossRefGoogle Scholar
Aulbach, S., Griffin, W.L., O'Reilly, S.Y. and McCandless, T.E. (2004) Genesis and evolution of the lithospheric mantle beneath the Buffalo Head Terrane, Alberta (Canada). Lithos, 77, 413451.CrossRefGoogle Scholar
Aulbach, S., O'Reilly, S.Y., Griffin, W.L. and Pearson, N.J. (2008) Subcontinental lithospheric mantle origin of high niobium/tantalum ratios in eclogites. Nature Geoscience, 1, 468472.CrossRefGoogle Scholar
Aulbach, S., Griffin, W.L., Pearson, N.J. and O'Reilly, S.Y. (2013) Nature and timing of metasomatism in the stratified mantle lithosphere beneath the central Slave craton (Canada). Chemical Geology, 352, 153169.10.1016/j.chemgeo.2013.05.037CrossRefGoogle Scholar
Aulbach, S., Sun, J., Tappe, S., Höfer, H.E. and Gerdes, A. (2017) Volatile-rich metasomatism in the cratonic mantle beneath SW Greenland: link to kimberlites and mid-lithospheric discontinuities. Journal of Petrology, 58, 23112338.CrossRefGoogle Scholar
Bogatikov, O.A., Ryabchikov, I.D., Kononova, V.A., Makhotkin, I.L., Novgorodova, N.I., Solovova, I.P., Galuskin, E.V., Ganeev, I.I., Girnis, A.V. and Eremeev, N.V. (1991) Lamproites. Priroda, Moscow, pp. 302.Google Scholar
Bogatikov, O.A., Kononova, V.A., Pervov, V.A. and Zhuravlev, D.Z. (1994) Petrogenesis of Mesozoic potassic magmatism of the Central Aldan: a Sr-Nd isotopic and geodynamic model. International Geology Review, 36, 629644.CrossRefGoogle Scholar
Botkunov, A.I., Garanin, V.K., Krot, A.N. and Kudryavtseva, G.P. (1987) Mineral inclusions in garnets from kimberlites of Yakutia: their genetic and practical significance. International Geology Review, 29, 163177.10.1080/00206818709466134CrossRefGoogle Scholar
Boyd, F.R. (1989) Compositional distinction between oceanic and cratonic lithosphere. Earth and Planetary Science Letters, 96, 1526.CrossRefGoogle Scholar
Brey, G.P. and Köhler, T. (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. Journal of Petrology, 31, 13531378.Google Scholar
Bulanova, G.P., Muchemwa, E., Pearson, D.G., Griffin, B.J., Kelley, S.P., Klemme, S. and Smith, C.B. (2004) Syngenetic inclusions of yimengite in diamond from Sese kimberlite (Zimbabwe) – evidence for metasomatic conditions of growth. Lithos, 77, 181192.CrossRefGoogle Scholar
Canil, D., Schulze, D.J., Hall, D., Hearn, B.C. and Milliken, S.M. (2003) Lithospheric roots beneath western Laurentia: the geochemical signal in mantle garnets. Canadian Journal of Earth Sciences, 40, 10271051.10.1139/e03-003CrossRefGoogle Scholar
Carbno, G.B. and Canil, D. (2002) Mantle structure beneath the SW Slave craton, Canada: Constraints from garnet geochemistry in the Drybones Bay kimberlite. Journal of Petrology, 43, 129142.10.1093/petrology/43.1.129CrossRefGoogle Scholar
Chassé, M., Griffin, W.L., Alard, O., O'Reilly, S.Y. and Calas, G. (2018) Insights into the mantle geochemistry of scandium from a meta-analysis of garnet data. Lithos, 310, 409421.10.1016/j.lithos.2018.03.026CrossRefGoogle Scholar
Davies, G.R., Stolz, A.J., Mahotkin, I.L., Nowell, G.M. and Pearson, D.G. (2006) Trace element and Sr–Pb–Nd–Hf isotope evidence for ancient, fluid-dominated enrichment of the source of Aldan Shield lamproites. Journal of Petrology, 47, 11191146.10.1093/petrology/egl005CrossRefGoogle Scholar
Dawson, J.B. (2004) A fertile harzburgite-gamet lherzolite transition: possible inferences for the roles of strain and metasomatism in upper mantle peridotites. Lithos, 77, 553569.10.1016/j.lithos.2004.03.016CrossRefGoogle Scholar
Dawson, J.B. and Stephens, W. (1975) Statistical classification of garnets from kimberlite and associated xenoliths. The Journal of Geology, 1975, 589607.CrossRefGoogle Scholar
Day, H.W. (2012) A revised diamond-graphite transition curve. American Mineralogist, 97, 5262.10.2138/am.2011.3763CrossRefGoogle Scholar
Dickinson, W.R. (1997) Overview: Tectonic implications of Cenozoic volcanism in coastal California. Geological Society of America Bulletin, 109, 936954.2.3.CO;2>CrossRefGoogle Scholar
Donskaya, T.V. (2020) Assembly of the Siberian craton: constraints from Paleoproterozoic granitoids. Precambrian Research, 348, 105869.10.1016/j.precamres.2020.105869CrossRefGoogle Scholar
Donskaya, T.V., Gladkochub, D.P., Mazukabzov, A.M. and Ivanov, A.V. (2013) Late Paleozoic–Mesozoic subduction-related magmatism at the southern margin of the Siberian continent and the 150 million-year history of the Mongol-Okhotsk Ocean. Journal of Asian Earth Sciences, 62, 7997.CrossRefGoogle Scholar
Doucet, L.S., Ionov, D.A., Golovin, A.V. and Pokhilenko, N.P. (2012) Depth, degrees and tectonic settings of mantle melting during craton formation: inferences from major and trace element compositions of spinel harzburgite xenoliths from the Udachnaya kimberlite, central Siberia. Earth and Planetary Science Letters, 359–360, 206218.CrossRefGoogle Scholar
Droop, G.T.R. (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine, 51, 431435.CrossRefGoogle Scholar
Gibson, S.A., Rooks, E.E., Day, J.A., Petrone, C.M. and Leat, P.T. (2020) The role of sub-continental mantle as both “sink” and “source” in deep Earth volatile cycles. Geochimica et Cosmochimica Acta, 275, 140162.CrossRefGoogle Scholar
Grégoire, M., Lorand, J.P., O'Reilly, S.Y. and Cottin, J.Y. (2000) Armalcolite-bearing, Ti-rich metasomatic assemblages in harzburgitic xenoliths from the Kerguelen Islands: Implications for the oceanic mantle budget of high-field strength elements. Geochimica et Cosmochimica Acta, 64, 673694.CrossRefGoogle Scholar
Griffin, W.L. and Ryan, C.G. (1995) Trace elements in indicator minerals: area selection and target evaluation in diamond exploration. Journal of Geochemical Exploration, 53, 311337.CrossRefGoogle Scholar
Griffin, W.L., Fisher, N.I., Friedman, J., Ryan, C.G. and O'Reilly, S.Y. (1999a) Cr-pyrope garnets in the lithospheric mantle. I. Compositional systematics and relations to tectonic setting. Journal of Petrology, 40, 679704.CrossRefGoogle Scholar
Griffin, W.L., Ryan, C.G., Kaminsky, F.V., O'Reilly, S.Y., Natapov, L.M., Win, T.T., Kinny, P.D. and Ilupin, I.P. (1999b) The Siberian lithosphere traverse: mantle terranes and the assembly of the Siberian Craton. Tectonophysics, 310, 135.CrossRefGoogle Scholar
Griffin, W.L., Shee, S.R., Ryan, C.G., Win, T.T. and Wyatt, B.A. (1999c) Harzburgite to lherzolite and back again: metasomatic processes in ultramafic xenoliths from the Wesselton kimberlite, Kimberley, South Africa. Contributions to Mineralogy and Petrology, 134, 232250.10.1007/s004100050481CrossRefGoogle Scholar
Griffin, W.L., O'Reilly, S.Y., Abe, N., Aulbach, S., Davies, R.M., Pearson, N.J., Doyle, B.J. and Kivi, K. (2003) The origin and evolution of Archean lithospheric mantle. Precambrian Research, 127, 1941.10.1016/S0301-9268(03)00180-3CrossRefGoogle Scholar
Griffin, W.L., Powell, W.J., Pearson, N.J. and O'Reilly, S.Y. (2008) GLITTER: data reduction software for laser ablation ICP-MS. Pp. 204207 in: Laser Ablation-ICP-MS in the Earth Sciences. Mineralogical Association of Canada short course series, 40.Google Scholar
Grütter, H.S., Gurney, J.J., Menzies, A.H. and Winter, F. (2004) An updated classification scheme for mantle-derived garnet, for use by diamond explorers. Lithos, 77, 841857.10.1016/j.lithos.2004.04.012CrossRefGoogle Scholar
Grütter, H., Latti, D. and Menzies, A. (2006) Cr-saturation arrays in concentrate garnet compositions from kimberlite and their use in mantle barometry. Journal of Petrology, 47, 801820.10.1093/petrology/egi096CrossRefGoogle Scholar
Grütter, H.S., Pell, J.A. and Fitzgerald, C.E. (2018) Use of a simplified Mahalanobis distance approach to constrain the dispersion and provenance of Cr-pyrope populations at the Chidliak kimberlite province, Nunavut, Canada. Mineralogy and Petrology, 112, 707718.10.1007/s00710-018-0578-7CrossRefGoogle Scholar
Gurney, J.J. and Switzer, G.S. (1973) The discovery of garnets closely related to diamonds in the Finsch pipe, South Africa. Contributions to Mineralogy and Petrology, 39, 103116.10.1007/BF00375734CrossRefGoogle Scholar
Gurney, J.J. and Zweistra, P. (1995) The interpretation of the major element compositions of mantle minerals in diamond exploration. Journal of Geochemical Exploration, 53, 293309.10.1016/0375-6742(94)00021-3CrossRefGoogle Scholar
Haggerty, S.E. (1991) Oxide mineralogy of the upper mantle. Pp. 355416 in: Oxide Minerals: Petrologic and Magnetic Significance (Lindsley, D.H., editor). Reviews in Mineralogy, Vol. 25. Mineralogical Society of America, Washington DC.CrossRefGoogle Scholar
Haggerty, S.E., Smyth, J.R., Erlank, A.J., Rickard, R.S. and Danchin, R.V. (1983) Lindsleyite (Ba) and mathiasite (K): two new chromium-titanates in the crichtonite series from the upper mantle. American Mineralogist, 68, 494505.Google Scholar
Haggerty, S.E., Erlank, A.J. and Grey, I.E. (1986) Metasomatic mineral titanate complexing in the upper mantle. Nature, 319, 761763.10.1038/319761a0CrossRefGoogle Scholar
Hasterok, D. and Chapman, D. (2011) Heat production and geotherms for the continental lithosphere. Earth and Planetary Science Letters, 307, 5970.CrossRefGoogle Scholar
Hoal, K.E.O., Hoal, B.G., Erlank, A.J. and Shimizu, N. (1994) Metasomatism of the mantle lithosphere recorded by rare earth elements in garnets. Earth and Planetary Science Letters, 126, 303313.CrossRefGoogle Scholar
Holwell, D.A., Fiorentini, M., McDonald, I., Lu, Y., Giuliani, A., Smith, D.J., Keith, M. and Locmelis, M. (2019) A metasomatized lithospheric mantle control on the metallogenic signature of post-subduction magmatism. Nature Communications, 10, 110.CrossRefGoogle ScholarPubMed
Howarth, G.H., Barry, P.H., Pernet-Fisher, J.F., Baziotis, I.P., Pokhilenko, N.P., Pokhilenko, L.N., Bodnar, R.J., Taylor, L.A. and Agashev, A.M. (2014) Superplume metasomatism: Evidence from Siberian mantle xenoliths. Lithos, 184–187, 209224.CrossRefGoogle Scholar
Hunter, W.C. and Smith, D. (1981) Garnet peridotite from Colorado Plateau ultramafic diatremes: hydrates, carbonates, and comparative geothermometry. Contributions to Mineralogy and Petrology, 76, 312320.CrossRefGoogle Scholar
Ionov, D.A., Gregoire, M. and Prikhod'ko, V.S. (1999) Feldspar–Ti-oxide metasomatism in off-cratonic continental and oceanic upper mantle. Earth and Planetary Science Letters, 165, 3744.CrossRefGoogle Scholar
Ionov, D.A., Prikhodko, V.S., Bodinier, J.L., Sobolev, A.V. and Weis, D. (2005) Lithospheric mantle beneath the south-eastern Siberian craton: petrology of peridotite xenoliths in basalts from the Tokinsky Stanovik. Contributions to Mineralogy and Petrology, 149, 647665.CrossRefGoogle Scholar
Ivanov, A.V., Vladykin, N.V., Demonterova, E.I., Gorovoy, V.A. and Dokuchits, E.Y. (2018) 40Ar/39Ar geochronology of the Malyy (Little) Murun massif, Aldan shield of the Siberian craton: A simple story for an intricate igneous complex. Minerals, 8, 602.CrossRefGoogle Scholar
Jaques, A.L., Lewis, J.D., Smith, C.B., Gregory, G.P., Ferguson, J., Chappell, B.W. and McCulloch, M.T. (1984) The diamond-bearing ultrapotassic (lamproitic) rocks of the West Kimberley region, Western Australia. Developments in Petrology, 11, 225254.CrossRefGoogle Scholar
Jones, A.P., Smith, J.V. and Dawson, J.B. (1982) Mantle metasomatism in 14 veined peridotites from Bultfontein mine, South Africa. The Journal of Geology, 90, 435453.CrossRefGoogle Scholar
Kalfoun, F., Ionov, D. and Merlet, C. (2002) HFSE residence and Nb/Ta ratios in metasomatised, rutile-bearing mantle peridotites. Earth and Planetary Science Letters, 199, 4965.CrossRefGoogle Scholar
Khomich, V.G., Boriskina, N.G. and Santosh, M. (2015) Geodynamics of late Mesozoic PGE, Au, and U mineralization in the Aldan shield, North Asian Craton. Ore Geology Reviews, 68, 3042.CrossRefGoogle Scholar
Klein-BenDavid, O. and Pearson, D.G. (2009) Origins of subcalcic garnets and their relation to diamond forming fluids – Case studies from Ekati (NWT-Canada) and Murowa (Zimbabwe). Geochimica et Cosmochimica Acta, 73, 837855.10.1016/j.gca.2008.04.044CrossRefGoogle Scholar
Kobussen, A.F., Griffin, W.L. and O'Reilly, S.Y. (2009) Cretaceous thermo-chemical modification of the Kaapvaal cratonic lithosphere, South Africa. Lithos, 112, 886895.CrossRefGoogle Scholar
Konzett, J., Wirth, R., Hauzenberger, C. and Whitehouse, M. (2013) Two episodes of fluid migration in the Kaapvaal Craton lithospheric mantle associated with Cretaceous kimberlite activity: evidence from a harzburgite containing a unique assemblage of metasomatic zirconium-phases. Lithos, 182–183, 165184.CrossRefGoogle Scholar
Kopylova, M.G., Russell, J.K., Stanley, C. and Cookenboo, H. (2000) Garnet from Cr- and Ca-saturated mantle: implications for diamond exploration. Journal of Geochemical Exploration, 68, 183199.CrossRefGoogle Scholar
Kornilova, V. (1997) Petrography and mineralogy of the calc-alkaline lamprophyres and eruptive breccias from Chompolo area. Otechestvennaya Geologiya, 9, 69.Google Scholar
Kostrovitsky, S.I. and Garanin, V.K. (1992) High-chromium titanates in pyropes of the Aldanskaya dyke (Yakutia). Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 121, 6771.Google Scholar
Laetsch, T. and Downs, R.T. (2006) Software for identification and refinement of cell parameters from powder diffraction data of minerals using the RRUFF Project and American Mineralogist Crystal Structure Databases. Abstract Pp. 2328 in: 19th General Meeting of the International Mineralogical Association. Kobe, Japan.Google Scholar
Lafuente, B., Downs, R., Yang, H. and Stone, N. (2015) The power of databases: The RRUFF project. Pp. 130 in: Highlights in Mineralogical Crystallography (Armbruster, T. and Danisi, R.M., editors). De Gruyter, Berlin.Google Scholar
Li, C. and van der Hilst, R.D. (2010) Structure of the upper mantle and transition zone beneath Southeast Asia from traveltime tomography. Journal of Geophysical Research: Solid Earth, 115.Google Scholar
Liu, X., Zhao, D., Li, S. and Wei, W. (2017) Age of the subducting Pacific slab beneath East Asia and its geodynamic implications. Earth and Planetary Science Letters, 464, 166174.CrossRefGoogle Scholar
Locock, A.J. (2014) An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Computers & Geosciences, 62, 111.CrossRefGoogle Scholar
Lu, Q. and Zhou, H. (1994) A new progress in research on mathiasite in Mengying, Shandong, III. Oxide minerals containing the large ions Cr, Ti and Fe in the upper mantle. Acta Mineralogica Sinica, 14, 343347.Google Scholar
Ludwig, K.R. (2003) Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel, Berkeley Geochronology Center Special Publication Vol. 4. Berkeley Geochronology Center, California, USA.Google Scholar
Makhotkin, I., Arakelyants, M. and Vladykin, N. (1989) On the age of lamproites from the Aldanian province. Doklady Akademii Nauk SSSR, 306, 703707.Google Scholar
Malkovets, V.G., Griffin, W.L., O'Reilly, S.Y. and Wood, B.J. (2007) Diamond, subcalcic garnet, and mantle metasomatism: Kimberlite sampling patterns define the link. Geology, 35, 339342.10.1130/G23092A.1CrossRefGoogle Scholar
Malkovets, V.G., Rezvukhin, D.I., Belousova, E.A., Griffin, W.L., Sharygin, I.S., Tretiakova, I.G., Gibsher, A.A., O'Reilly, S.Y., Kuzmin, D.V., Litasov, K.D., Logvinova, A.M., Pokhilenko, N.P. and Sobolev, N.V. (2016) Cr-rich rutile: A powerful tool for diamond exploration. Lithos, 265, 304311.10.1016/j.lithos.2016.08.017CrossRefGoogle Scholar
Mallmann, G. and O'Neill, H.S.C. (2009) The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). Journal of Petrology, 50, 17651794.CrossRefGoogle Scholar
Maruyama, S., Isozaki, Y., Kimura, G. and Terabayashi, M. (1997) Paleogeographic maps of the Japanese Islands: plate tectonic synthesis from 750 Ma to the present. Island Arc, 6, 121142.CrossRefGoogle Scholar
McDonough, W.F. and Sun, S.S. (1995) The composition of the Earth. Chemical Geology, 120, 223253.CrossRefGoogle Scholar
McGetchin, T.R. and Silver, L.T. (1970) Compositional relations in minerals from kimberlite and related rocks in the Moses Rock dike, San Juan County, Utah. American Mineralogist, 55, 17381771.Google Scholar
McLean, H., Banas, A., Creighton, S., Whiteford, S., Luth, R.W. and Stachel, T. (2007) Garnet xenocrysts from the Diavik mine, NWT, Canada: composition, color, and paragenesis. The Canadian Mineralogist, 45, 11311145.10.2113/gscanmin.45.5.1131CrossRefGoogle Scholar
Mitchell, R., Smith, C. and Vladykin, N. (1994) Isotopic composition of strontium and neodymium in potassic rocks of the Little Murun complex, Aldan Shield, Siberia. Lithos, 32, 243248.CrossRefGoogle Scholar
Mues-Schumacher, U., Keller, J., Kononova, V. and Suddaby, P. (1995) Petrology and age determinations of the ultramafic (lamproitic) rocks from the Yakokut complex, Aldan Shield, Eastern Siberia. Mineralogical Magazine, 59, 409428.CrossRefGoogle Scholar
Mues-Schumacher, U., Keller, J., Kononova, V.A. and Suddaby, P.J. (1996) Mineral chemistry and geochronology of the potassic alkaline ultramafic Inagli complex, Aldan Shield, eastern Siberia. Mineralogical Magazine, 60, 711730.10.1180/minmag.1996.060.402.02CrossRefGoogle Scholar
Nickel, K. and Green, D. (1985) Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds. Earth and Planetary Science Letters, 73, 158170.CrossRefGoogle Scholar
Nikolenko, E.I., Sharygin, I.S., Alifirova, T.A., Korsakov, A.V., Zelenovskiy, P.S. and Shur, V.Y. (2017) Graphite-bearing mineral assemblages in the mantle beneath Central Aldan superterrane of North Asian craton: combined confocal micro-Raman and electron microprobe characterization. Journal of Raman Spectroscopy, 48, 15971605.10.1002/jrs.5163CrossRefGoogle Scholar
Nikolenko, E., Sharygin, I., Malkovets, V., Rezvukhin, D. and Afanasiev, V. (2020a). Mineralogy and geochemistry of the inclusion-bearing Cr-pyropes from the Chompolo lamprophyres, Aldan shield, Siberian craton. Abstract id 12823 in: EGU General Assembly Conference Abstracts. Vienna, Austria, 4–8 May 2020.Google Scholar
Nikolenko, E.I., Lobov, K.V., Agashev, A.M., Tychkov, N.S., Chervyakovskaya, M.V., Sharygin, I.S. and Nikolenko, A.M. (2020b) 40Ar/39Ar geochronology and new mineralogical and geochemical data from lamprophyres of Chompolo field (South Yakutia, Russia). Minerals, 10, 886.CrossRefGoogle Scholar
Nikolenko, E.I., Sharygin, I.S., Rezvukhin, D.I., Malkovets, V.G., Tychkov, N.S. and Pokhilenko, N.P. (2021) Sulfide-bearing polymineralic inclusions in mantle-derived garnets from lamprophyres of the Chompolo field (Central Aldan, Siberian craton). Doklady Earth Sciences, 497, 300304.10.1134/S1028334X21040115CrossRefGoogle Scholar
Nimis, P. and Grütter, H. (2010) Internally consistent geothermometers for garnet peridotites and pyroxenites. Contributions to Mineralogy and Petrology, 159, 411427.CrossRefGoogle Scholar
Nimis, P. and Taylor, W.R. (2000) Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contributions to Mineralogy and Petrology, 139, 541554.Google Scholar
Paquette, J.-L., Ionov, D.A., Agashev, A.M., Gannoun, A. and Nikolenko, E.I. (2017) Age, provenance and Precambrian evolution of the Anabar shield from U-Pb and Lu-Hf isotope data on detrital zircons, and the history of the northern and central Siberian craton. Precambrian Research, 301, 134144.CrossRefGoogle Scholar
Parfenov, L.M., Berzin, N.A., Badarch, G., Belichenko, V.G., Bulgatov, A.N., Dril, S.I., Khanchuk, A.I., Kirillova, G.L., Kuz'min, M.I., Nokleberg, W.J., Ogasawara, M., Obolenskiy, A.A., Prokopiev, A.V., Rodionov, S.M., Scotese, C.R., Timofeev, V.F., Tomurtogoo, O. and Yan, H. (2011) Tectonic and metallogenic model for Northeast Asia. in: Metallogenesis and Tectonics of Northeast Asia (Nokleberg, W.J., editor). US Department of the Interior, US Geological Survey.Google Scholar
Pawley, A.R. and Wood, B.J. (1995) The high-pressure stability of talc and 10 Å phase: potential storage sites for H2O in subduction zones. American Mineralogist, 80, 9981003.CrossRefGoogle Scholar
Pearce, J.A. and Peate, D.W. (1995) Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences, 23, 251285.CrossRefGoogle Scholar
Pokhilenko, N.P., Sobolev, N.V., Kuligin, S.S. and Shimizu, N. (1999). Peculiarities of distribution of pyroxenite paragenesis garnets in Yakutian kimberlites and some aspects of the evolution of the Siberian craton lithospheric mantle. Pp. 689698 in: Proceedings of the 7th International Kimberlite Conference. Cape Town, South Africa.Google Scholar
Prokopyev, I., Doroshkevich, A., Ponomarchuk, A., Redina, A., Yegitova, I., Ponomarev, J., Sergeev, S., Kravchenko, A., Ivanov, A. and Sokolov, E. (2019) 1U-Pb SIMS and Ar-Ar geochronology, petrography, mineralogy and gold mineralization of the late Mesozoic Amga alkaline rocks (Aldan shield, Russia). Ore Geology Reviews, 109, 520534.CrossRefGoogle Scholar
Rezvukhin, D.I., Malkovets, V.G., Sharygin, I.S., Kuzmin, D.V., Gibsher, A.A., Litasov, K.D., Pokhilenko, N.P. and Sobolev, N.V. (2016a) Inclusions of crichtonite group minerals in pyropes from the Internatsionalnaya kimberlite pipe, Yakutia. Doklady Earth Sciences, 466, 206209.CrossRefGoogle Scholar
Rezvukhin, D.I., Malkovets, V.G., Sharygin, I.S., Kuzmin, D.V., Litasov, K.D., Gibsher, A.A., Pokhilenko, N.P. and Sobolev, N.V. (2016b) Inclusions of Cr-and Cr–Nb-Rutile in pyropes from the Internatsionalnaya kimberlite pipe, Yakutia. Doklady Earth Sciences, 466, 173176.CrossRefGoogle Scholar
Rezvukhin, D.I., Malkovets, V.G., Sharygin, I.S., Tretiakova, I.G., Griffin, W.L. and O'Reilly, S.Y. (2018) Inclusions of crichtonite-group minerals in Cr-pyropes from the Internatsionalnaya kimberlite pipe, Siberian Craton: Crystal chemistry, parageneses and relationships to mantle metasomatism. Lithos, 308–309, 181195.CrossRefGoogle Scholar
Rezvukhin, D.I., Alifirova, T.A., Korsakov, A.V. and Golovin, A.V. (2019) A new occurrence of yimengite-hawthorneite and crichtonite-group minerals in an orthopyroxenite from kimberlite: Implications for mantle metasomatism. American Mineralogist, 104, 761774.CrossRefGoogle Scholar
Rezvukhin, D.I., Rashchenko, S.V., Sharygin, I.S., Malkovets, V.G., Alifirova, T.A., Pautov, L.A., Nigmatulina, E.N. and Seryotkin, Y.V. (2020) Botuobinskite, IMA 2018-143a. CNMNC Newsletter 57, CNMNC Newsletter No. 57; Mineralogical Magazine, 84, https://doi.org/10.1180/mgm.2020.73CrossRefGoogle Scholar
Rosen, O.M. and Turkina, O.M. (2007) The oldest rock assemblages of the Siberian Craton. Pp. 793838 in: Developments in Precambrian Geology (Condie, K.C, editor). Elsevier.Google Scholar
Rosen, O.M., Condie, K.C., Natapov, L.M. and Nozhkin, A.D. (1994) Archean and Early Proterozoic evolution of the Siberian craton: a preliminary assessment. Pp. 411459 in: Archean Crustal Evolution (Condie, K.C., editor). Elsevier, Amsterdam.CrossRefGoogle Scholar
Rudnick, R.L., Barth, M., Horn, I. and McDonough, W.F. (2000) Rutile-bearing refractory eclogites: Missing link between continents and depleted mantle. Science, 287, 278281.CrossRefGoogle ScholarPubMed
Ryan, C.G., Griffin, W.L. and Pearson, N.J. (1996) Garnet geotherms: Pressure-temperature data from Cr-pyrope garnet xenocrysts in volcanic rocks. Journal of Geophysical Research, 101, 56115625.10.1029/95JB03207CrossRefGoogle Scholar
Săbău, G. and Alberico, A. (2003). A new loveringite occurrence: Oriented rods in garnet from the Foltea lherzolite, South Carpathians, Romania. Pp. 92 in: 2nd Mineral Sciences in the Carpathians International Conference. Szeged, Hungary.Google Scholar
Safonova, I.Y. and Santosh, M. (2014) Accretionary complexes in the Asia-Pacific region: tracing archives of ocean plate stratigraphy and tracking mantle plumes. Gondwana Research, 25, 126158.CrossRefGoogle Scholar
Schulze, D.J. (1989) Constraints on the abundance of eclogite in the upper mantle. Journal of Geophysical Research: Solid Earth, 94, 42054212.CrossRefGoogle Scholar
Schulze, D.J. (1990) Silicate-bearing rutile-dominated nodules from South African kimberlites: Metasomatized cumulates. American Mineralogist, 75, 97104.Google Scholar
Scully, K.R., Canil, D. and Schulze, D.J. (2004) The lithospheric mantle of the Archean Superior Province as imaged by garnet xenocryst geochemistry. Chemical Geology, 207, 189221.CrossRefGoogle Scholar
Sharygin, I.S., Nikolenko, E.I. and Lobov, K.V. (2017). Carbonate inclusions in Cr-pyropes derived from the mantle beneath Central Aldan superterrane of Siberian cratonin. Abstract No. 11IKC-4606 in: International Kimberlite Conference: Extended Abstracts, 11. Gaborone, Botswana.Google Scholar
Shchukina, E.V., Agashev, A.M. and Pokhilenko, N.P. (2016) Metasomatic origin of garnet xenocrysts from the V. Grib kimberlite pipe, Arkhangelsk region, NW Russia. Geoscience Frontiers, 8, 641651.CrossRefGoogle Scholar
Shilina, G. and Zeitlin, S. (1959) On the first finding of kimberlites in Aldan. Soviet Geology, 10, 132136.Google Scholar
Shimizu, N. and Richardson, S. (1987) Trace element abundance patterns of garnet inclusions in peridotite-suite diamonds. Geochimica et Cosmochimica Acta, 51, 755758.CrossRefGoogle Scholar
Shirey, S.B., Cartigny, P., Frost, D.J., Keshav, S., Nestola, F., Nimis, P., Pearson, D.G., Sobolev, N.V. and Walter, M.J. (2013) Diamonds and the geology of mantle carbon. Pp. 355421 in: Carbon in Earth (Hazen, R.M., Jones, A.P. and Baross, J.A., editors). Reviews in Mineralogy & Geochemistry, 75. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Smelov, A.P. and Timofeev, V.F. (2005). The tectonics and metallogeny of the Precambrian of the Aldan-Stanovoy Shield. Pp. 5356 in: Mineral Deposit Research: Meeting The Global Challenge. Springer, Berlin, Heidelberg, Germany.CrossRefGoogle Scholar
Smelov, A.P. and Timofeev, V.F. (2007) The age of the North Asian Cratonic basement: an overview. Gondwana Research, 12, 279288.CrossRefGoogle Scholar
Smelov, A.P., Shatsky, V.S., Ragozin, A.L., Reutskii, V.N. and Molotkov, A.E. (2012) Diamondiferous Archean rocks of the Olondo greenstone belt (western Aldan–Stanovoy shield). Russian Geology and Geophysics, 53, 10121022.CrossRefGoogle Scholar
Smith, D. (1987) Genesis of carbonate in pyrope from ultramafic diatremes on the Colorado Plateau, southwestern United States. Contributions to Mineralogy and Petrology, 97, 389396.CrossRefGoogle Scholar
Smith, D. (2020) Trace elements in Cr-pyrope from the Navajo volcanic field of the Colorado Plateau, SW USA, and implications for the mantle wedge during low-angle subduction. Lithos, 362–363, 105460, doi: 10.1016/j.lithos.2020.105460.CrossRefGoogle Scholar
Smith, B.H.S. and Skinner, E.M.W. (1984) A new look at Prairie Creek, Arkansas. Developments in Petrology, 11, 255283.CrossRefGoogle Scholar
Sobolev, N.V., Lavrent'ev, Y.G., Pokhilenko, N.P. and Usova, L.V. (1973) Chrome-rich garnets from the kimberlites of Yakutia and their parageneses. Contributions to Mineralogy and Petrology, 40, 3952.10.1007/BF00371762CrossRefGoogle Scholar
Stachel, T. and Harris, J.W. (2008) The origin of cratonic diamonds – constraints from mineral inclusions. Ore Geology Reviews, 34, 532.CrossRefGoogle Scholar
Stachel, T., Viljoen, K.S., Brey, G. and Harris, J.W. (1998) Metasomatic processes in lherzolitic and harzburgitic domains of diamondiferous lithospheric mantle: REE in garnets from xenoliths and inclusions in diamonds. Earth and Planetary Science Letters, 159, 112.CrossRefGoogle Scholar
Stachel, T., Aulbach, S., Brey, G.P., Harris, J.W., Leost, I., Tappert, R. and Viljoen, K.S. (2004) The trace element composition of silicate inclusions in diamonds: a review. Lithos, 77, 119.CrossRefGoogle Scholar
Sweeney, R.J. (1994) Carbonatite melt compositions in the Earth's mantle. Earth and Planetary Science Letters, 128, 259270.CrossRefGoogle Scholar
Tollo, R.P. and Haggerty, S.E. (1987) Nb-Cr-rutile in the Orapa kimberlite pipe, Botswana. The Canadian Mineralogist, 25, 251264.Google Scholar
Tommasi, A., Vauchez, A. and Ionov, D.A. (2008) Deformation, static recrystallization, and reactive melt transport in shallow subcontinental mantle xenoliths (Tok Cenozoic volcanic field, SE Siberia). Earth and Planetary Science Letters, 272, 6577.CrossRefGoogle Scholar
Tychkov, N.S., Pokhilenko, N.P., Kuligin, S.S. and Malygina, E.V. (2008) Composition and origin of peculiar pyropes from lherzolites: evidence for the evolution of the lithospheric mantle of the Siberian Platform. Russian Geology and Geophysics, 49, 225239.CrossRefGoogle Scholar
Usui, T., Nakamura, E., Kobayashi, K., Maruyama, S. and Helmstaedt, H. (2003) Fate of the subducted Farallon plate inferred from eclogite xenoliths in the Colorado Plateau. Geology, 31, 589592.2.0.CO;2>CrossRefGoogle Scholar
Van der Voo, R., Spakman, W. and Bijwaard, H. (1999) Mesozoic subducted slabs under Siberia. Nature, 397, 246249.CrossRefGoogle Scholar
Varlamov, D.A., Garanin, V.K. and Kostrovitskiy, S.I. (1996) Exotic high-titanium minerals as inclusions in garnets from lower crustal and mantle xenoliths. Transactions of the Russian Academy of Sciences, Earth Science Section, 345A, 352355.Google Scholar
Velikoslavinskii, S.D., Kotov, A.B., Tolmacheva, E.V., Sal'nikova, E.B., Kovach, V.P. and Larin, A.M. (2011) Early Precambrian granite-gneiss complexes in the Central Aldan Shield. Petrology, 19, 382398.CrossRefGoogle Scholar
Velikoslavinsky, S.D., Kotov, A.B., Sal'nikova, E.B., Kovach, V.P., Glebovitsky, V.A., Zagornaya, N.Y., Yakovleva, S.Z., Tolmacheva, E.V., Anisimova, I.V. and Fedoseenko, A.M. (2006) Protoliths of the metamorphic rocks of the Fedorov Complex, Aldan Shield: character, age, and geodynamic environments of origin. Petrology, 14, 2138.CrossRefGoogle Scholar
Vladimirov, N., Dauev, Y. and Zubarev, B. (1989) Geology and Genesis of Diamond Deposits. TsNIGRI, Moscow, Russia.Google Scholar
Vladykin, N.V. (1997) Geochemistry and genesis of lamproites of the Aldan Shield. Russian Geology and Geophysics, 38, 128141.Google Scholar
Vladykin, N. (2009) Potassium alkaline lamproite-carbonatite complexes: petrology, genesis, and ore reserves. Russian Geology and Geophysics, 50, 11191128.CrossRefGoogle Scholar
Vrana, S. (2008) Mineral inclusions in pyrope from garnet peridotites, Kolín area, central Czech Republic. Journal of Geosciences, 53, 1730.Google Scholar
Walter, M.J. (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. Journal of Petrology, 39, 2960.CrossRefGoogle Scholar
Wang, L., Essene, E.J. and Zhang, Y. (1999) Mineral inclusions in pyrope crystals from Garnet Ridge, Arizona, USA: implications for processes in the upper mantle. Contributions to Mineralogy and Petrology, 135, 164178.CrossRefGoogle Scholar
Woodland, A., Uenver-Thiele, L. and Seitz, H. (2018) Influence of metasomatism on vanadium-based redox proxies for mantle peridotite. Geochemical Perspectives Letters, 8, 1116.CrossRefGoogle Scholar
Zaitsev, A.I. and Smelov, A.P. (2010) Isotope Geochronology of Kimberlite Rocks of the Yakutian Province. Ofset, Yakutsk, Russia, Pp. 108.Google Scholar
Zhu, R.-X., Yang, J.-H. and Wu, F.-Y. (2012) Timing of destruction of the North China Craton. Lithos, 149, 5160.CrossRefGoogle Scholar
Zhu, R.Z., Ni, P., Ding, J.Y., Wang, G.G., Fan, M.S. and Li, S.N. (2019) Metasomatic processes in the Lithospheric mantle beneath the No. 30 Kimberlite (Wafangdian Region, North China Craton). The Canadian Mineralogist, 57, 499517.CrossRefGoogle Scholar
Ziberna, L., Nimis, P., Zanetti, A., Marzoli, A. and Sobolev, N.V. (2013) Metasomatic processes in the central Siberian cratonic mantle: Evidence from garnet xenocrysts from the Zagadochnaya kimberlite. Journal of Petrology, 54, 23792409.CrossRefGoogle Scholar
Ziberna, L., Nimis, P., Kuzmin, D. and Malkovets, V.G. (2016) Error sources in single-clinopyroxene thermobarometry and a mantle geotherm for the Novinka kimberlite, Yakutia. American Mineralogist, 101, 22222232.10.2138/am-2016-5540CrossRefGoogle Scholar
Zonenshain, L.P., Kuzmin, M.I. and Natapov, L.M. (1990) Geology of the USSR: a Plate-Tectonic Synthesis. American Geophysical Union, Washington.CrossRefGoogle Scholar
Supplementary material: File

Rezvukhin et al. supplementary material

Rezvukhin et al. supplementary material

Download Rezvukhin et al. supplementary material(File)
File 49.2 KB