Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-11T18:23:17.911Z Has data issue: false hasContentIssue false

Cationic ordering in oxide glasses: the example of transition elements

Published online by Cambridge University Press:  05 July 2018

L. Galoisy*
Affiliation:
Laboratoire de Minéralogie Cristallographie, UMR CNRS 7590, Universités Paris 6 (Pierre et Marie Curie), Paris 7 (Denis Diderot) et Institut de Physique du Globe de Paris, 4, place Jussieu, 75251 Paris cedex 05, France
L. Cormier
Affiliation:
Laboratoire de Minéralogie Cristallographie, UMR CNRS 7590, Universités Paris 6 (Pierre et Marie Curie), Paris 7 (Denis Diderot) et Institut de Physique du Globe de Paris, 4, place Jussieu, 75251 Paris cedex 05, France
S. Rossano
Affiliation:
Laboratoire de Minéralogie Cristallographie, UMR CNRS 7590, Universités Paris 6 (Pierre et Marie Curie), Paris 7 (Denis Diderot) et Institut de Physique du Globe de Paris, 4, place Jussieu, 75251 Paris cedex 05, France
A. Ramos
Affiliation:
Laboratoire de Minéralogie Cristallographie, UMR CNRS 7590, Universités Paris 6 (Pierre et Marie Curie), Paris 7 (Denis Diderot) et Institut de Physique du Globe de Paris, 4, place Jussieu, 75251 Paris cedex 05, France
G. Calas
Affiliation:
Laboratoire de Minéralogie Cristallographie, UMR CNRS 7590, Universités Paris 6 (Pierre et Marie Curie), Paris 7 (Denis Diderot) et Institut de Physique du Globe de Paris, 4, place Jussieu, 75251 Paris cedex 05, France
P. Gaskell
Affiliation:
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE, UK
M. Le Grand
Affiliation:
Laboratoire de Minéralogie Cristallographie, UMR CNRS 7590, Universités Paris 6 (Pierre et Marie Curie), Paris 7 (Denis Diderot) et Institut de Physique du Globe de Paris, 4, place Jussieu, 75251 Paris cedex 05, France

Abstract

Structural data have been obtained on the cation surroundings in multi-component silicate and borosilicate glasses using chemically selective spectroscopic and scattering methods, such as extended X-ray absorption and neutron scattering with isotope substitution (NSIS). Transition elements such as Ni or Ti may occur in unusual 5-coordinated sites which coexist with other coordination numbers, depending on glass composition. Distribution of cationic sites in the glassy structure is responsible for unusual spectroscopic properties, as shown by Fe2+ Mössbauer spectroscopy. The environment of cations such as Zn, Zr or Mo, has been determined by EXAFS and discussed using the bond valence theory, which predicts the way to charge compensate the oxygen neighbours and which indicates the linkage of cationic sites with the silicate framework. Cation-cation correlations are given by NSIS up to ∼8 Á, indicating an extensive Medium Range Ordering (MRO) with corner- and edge-linked cationic polyhedra, for Ti and Ni-bearing glasses, respectively. This heterogeneous cationic distribution in glasses is consistent with the presence of two-dimensional domains in which cation mixing may occur, as shown in a Ca-Ni metasilicate glass. Three-dimensional domains have also been found by Ni-K edge EXAFS in the case of low alkali borate glasses, with a local structure which mimics some aspects of crystalline NiO. The presence of ordered cationic domains, clearly illustrated by Reverse Monte Carlo simulations helps to rationalize the physical properties of multi-component silicate glasses.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramo, M.C., Pizzimenti, G. and Consolo, A. (1991) Microscopic structure of doped borate glasses from molecular dynamics simulations. Phil. Mag. B, 64, 495508.CrossRefGoogle Scholar
Angell, C.A. (1988) Perspective on the glass transition. J. Phys. Chem. Solids, 49, 863–71.CrossRefGoogle Scholar
Balan, E., Allard, T., Boizot, B., Morin, G. and Muller, J.P. (1999) Structural Fe(III) in natural kaolinite: new insights from EPR spectra fitting at the X and Q band frequencies. Clays Clay Miner., 47, 605–16.CrossRefGoogle Scholar
Berkes, J.S. and White, W.B. (1968) Optical spectra of nickel in alkali tetraborate glasses. Phys. Chem. Glasses, 3, 189–202.Google Scholar
Börjesson, L., Torell, L.M., Dahlborg, U. and Howells, W.S. (1989) Evidence of anomalous intermediaterange ordering in superionic borate glasses from neutron diffraction. Phys. Rev. B, 39, 3404–7.CrossRefGoogle ScholarPubMed
Brese, N.E. and O'Keeffe, M. (1991) Bondvalence parameters in solids. Acta Cryst. B, 47, 192–7.CrossRefGoogle Scholar
Brown, I.D. (1981) The bond-valence method: an empirical approach to chemical structure and bonding. Pp. 130 in: Structure and Bonding in Crystals, II, (O'Keeffe, M. and Navrotsky, A., editors). Academic Press, New York.Google Scholar
Brown, G.E. Jr.,, Farges, F. and Calas, G. (1995) X-ray scattering spectroscopic studies of silicate melts. Pp. 317410 in: Structure Dynamics and Properties of Silicate Melts (Stebbins, J.F., McMillan, P.F., and D.B. Dingwell, , editors). Reviews in Mineralogy, 32, Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Bruni, S., Cariati, F., Corrias, A., Gaskell, P.H., Lai, A., Musinu, A. and Piccaluga, G.(1995) Short range order of sodium-zinc, sodium-copper and sodiumnickel pyrophosphate glasses by diffractometric and spectroscopic techniques. J. Phys. Chem., 99, 15229–35.CrossRefGoogle Scholar
Burns, R.G. (1993) Mineralogical Applications of Crystal Field Theory (2nd Edition). Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Burns, R.G. (1994) Mineral Mössbauer spectroscopy: correlations between chemical shift and quadrupole splitting parameters. Hyperfine Interactions, 91, 739–45.CrossRefGoogle Scholar
Calas, G., Brown, G.E. Jr.,, Farges, F., Galoisy, L., Itié, J.P. and Polian, A. (1995) Cations in glasses under ambient and non-ambient conditions. Nuclear Inst. Methods Phys. B,97, 155–61.CrossRefGoogle Scholar
Cormier, L., Creux, S., Galoisy, L., Calas, G. and Gaskell, P.H. (1996) Medium range order around cations in silicate glasses. Chem. Geol., 128, 77–91.CrossRefGoogle Scholar
Cormier, L., Calas, G. and Gaskell, P.H. (1997) A reverse Monte Carlo study of a titanosilicate glass. J. Phys. Cond. Matter, 9, 10129–36.CrossRefGoogle Scholar
Cormier, L., Gaskell, P.H., Calas, G. and Soper, A.K. (1998) Medium range order around titanium in silicate glass studied by neutron diffraction with isotopic substitution. Phys. Rev. B, 58, 11322–30.CrossRefGoogle Scholar
Cormier, L., Galoisy, L. and Calas, G. (1999) Evidence of ordered domains in alkali borate glasses containing nickel. Europhys. Lett., 45, 572–8.CrossRefGoogle Scholar
Dumas, T., Ramos, A., Gandais, M. and Petiau, J. (1985) Role of zirconium in nucleation and crystallization of a(SiO2, Al2O3, MgO, ZnO) glass. Mat. Sci. Lett., 4, 129–32.CrossRefGoogle Scholar
Dumas, T. and Petiau, J. (1986) EXAFS study of titanium and zinc environments during nucleation in a cordierite glass. J. Non-Cryst. Solids, 81, 201–20.CrossRefGoogle Scholar
Farges, F. and Brown, G.E. Jr., (1996) An empirical model for the anharmonic analysis of hightemperature XAFS spectra of oxide compounds with applications to the coordination environment of Ni in NiO, γ-Ni2SiO4 and Ni-bearing Na-disilicate glass and melt. Chem. Geol., 128, 93106.CrossRefGoogle Scholar
Farges, F., Ponader, C.W. and Brown, G.E. Jr., (1991) Structural environments of incompatible elements in silicate glass/melt systems: I. Zirconium at trace levels. Geochim. Cosmochim. Acta, 55, 1563–74.CrossRefGoogle Scholar
Farges, F., Brown, G.E. Jr.,, Navrotsky, A. Gan, H. and Rehr, J.J. (1996) Coordination chemistry of Ti(IV) in silicate glasses and melts. III. Glasses and melts from ambient to high temperatures. Geochim. Cosmochim. Acta, 60, 3055–65.CrossRefGoogle Scholar
Galoisy, L. (1991) Etudes spectroscopiques de l'environnement du nickel dans les verres. Thèse de doctorat, Paris VII University, France.Google Scholar
Galoisy, L. and Calas, G. (1991) Spectroscopic evidence for five-coordinated Ni in CaNiSi2O6 glass. Amer. Mineral., 76, 1777–80.Google Scholar
Galoisy, L. and Calas, G. (1992) Network-forming Ni in silicate glasses, Amer. Mineral., 77, 677–80.Google Scholar
Galoisy, L. and Calas, G. (1993 a) Structural environment of nickel in silicate glass/melt systems: Part 1. Spectroscopic determination of coordination states. Geochim. Cosmochim. Acta, 57, 3613–26.CrossRefGoogle Scholar
Galoisy, L. and Calas, G. (1993 b) Structural environment of nickel in silicate glass/melt systems: Part II. Geochemical implications. Geochim. Cosmochim. Acta, 57, 3627–33.CrossRefGoogle Scholar
Galoisy, L., Delaye, J.M., Ghaleb, D., Calas, G., Le Grand, M., Morin, G., Ramos, A. and Pacaud, F. (1998) Local structure of simplified waste glass: complementarity of XAS and MD calculations. Scientific basis for Nuclear Waste Management, 21, 133–9.Google Scholar
Galoisy, L., Pélegrin, E., Arrio, M.A., Ildefonse, Ph. and Calas, G. (1999) Evidence for 6-coordinate d zirconium in inactive nuclear waste glasses. J. Amer. Ceram. Soc., 82, 2219–24.CrossRefGoogle Scholar
Gaskell, P.H. (1991) The structure of silicate glasses and crystals – Towards a convergence of views, Trans. Amer. Cryst. Assoc., 27, 95112.Google Scholar
Gaskell, P.H. (1993) Neutron contrast techniques applied to oxide glasses. Pp. 3445 in: Methods in Determination of Partial Structure Factors of Disordered Matter by Neutron and Anomalous X-ray Diffraction (Suck, J.B., Chieux, P., Raoux, D. and Rielke, C., editors). World Scientific, Singapore.Google Scholar
Gaskell, P.H., Eckersley, M.C., Barnes, A.C. and Chieux, P. (1991) Medium-range order in the cation distribution of a calcium silicate glass. Nature, 350, 675–7.CrossRefGoogle Scholar
Gaskell, P.H., Zhao, J., Calas, G. and Galoisy, L. (1992) The structure of mixed cation oxide glasses. Pp. 53–8 in: The Physics of Non-Crystalline Solids (Pye, L.D., La Course, W.C. and Stevens, H.J., editors). Taylor & Francis, London.Google Scholar
Greaves, G.N. (1985) EXAFS and the structure of glass. J. Non-Cryst. Solids, 71, 203–17.CrossRefGoogle Scholar
Greaves, G.N. (1989) EXAFS, glass structure and diffusion. Phil. Mag. B, 60, 793–800.CrossRefGoogle Scholar
Greaves, G.N. and Ngai, K.L. (1995) Reconciling ionicproperties with atomic structure in oxide glasses. Phys. Rev. B., 52, 6358–79.CrossRefGoogle ScholarPubMed
Hanson, C.D. and Egami, T. (1986) Distribution of Cs+ ions in single and mixed alkali silicate glasses from energy dispersive X-ray diffraction. J. Non-Cryst. Solids, 87, 171–84.CrossRefGoogle Scholar
Hawthorne, F.C. (1988) Mössbauer spectroscopy. Pp. 255340 in: Spectroscopic Methods in Mineralogy and Geology (Hawthorne, F.C., editor). Reviews in Mineralogy, 18. Mineralogical Society of America, Washington, D.C. CrossRefGoogle Scholar
Ingram, M.D. (1989) Ionic conductivity and glass structure. Phil. Mag. B, 60, 729–40.CrossRefGoogle Scholar
Keppler, H. (1992) Crystal field spectra and geochemistry of transition metals ions in silicate melts and glasses. Amer. Mineral., 77, 6275.Google Scholar
Keppler, H. and Rubie, D.C. (1993) Pressure induced coordination changes of transition metal ions in silcate melts. Nature, 364, 54–6.CrossRefGoogle Scholar
Levitz, P., Bonnin, D., Calas, G. and Legrand, A.P. (1980) A two-parameter distribution analysis of Mössbauer spectra in non-crystalline solids using general inversion method. J. Phys. E: Sci. Instrum., 13, 427–32.CrossRefGoogle Scholar
McGreevy, R.L. (1995) RMC – Progress, problems and prospects. Nucl. Inst. Meth. Phys. Res. A, 354, 116.CrossRefGoogle Scholar
Miglierini, M. (1989) Justification of various fitting problems for the Mössbauer spectrum analysis of metallic glasses. Nucl. Inst. Meth. Phys. Res. B, 36, 475–84.CrossRefGoogle Scholar
Musinu, A. and Picaluga, G. (1994) X-ray diffraction studies of multicomponent oxide glasses. J. Non Cryst. Solids, 177, 8190.CrossRefGoogle Scholar
Nishida, T. (1994) Advances in the Mössbauer effect for the structural study of glasses. J. Non Cryst. Solids, 117, 257–68.CrossRefGoogle Scholar
Paul, A. (1975) Activity of nickel oxide in alkali borate melts. J. Mater. Sci., 10, 422–6.CrossRefGoogle Scholar
Paul, A. and Douglas, R.W. (1967) Co-ordination equilibria of nickel (II) in alkali borate glasses. Phys. Chem. Glasses, 8, 233–37.Google Scholar
Pauling, L. (1960) The Nature of the Chemical Bond (3rd edition). Cornell.Google Scholar
Pickering, I.J., George, G.N., Lewandowski, J.T. and Jacobson, A.J. (1993) Nickel K-edge X-ray absorption fine structure of lithium nickel oxides. J. Amer. Chem. Soc., 115, 4137–44.CrossRefGoogle Scholar
Raj, P. (1989) Correlations among hyperfine parameters in amorphous metal systems: Mössbauer linewidth asymmetries and fluctuation hyperfine correlation functions. Hyperfine Interactions, 52, 373–8.CrossRefGoogle Scholar
Rehr, J.J.,Mustre de Leon, J., Zabinski, S.I. and Albers, R.C. (1991) Theoretical X-ray absorption fine structure standards. J. Amer. Chem. Soc., 113, 5135–40.CrossRefGoogle Scholar
Rossano, S., Balan, E., Morin, G., Bauer, J.-P., Calas, G. and Brouder, C. (1999) 57Fe Mössbauer spectroscopy of tektites. Phys. Chem. Min., 26, 530–8.CrossRefGoogle Scholar
Rossano, S., Ramos, A., Delaye, J.M., Creux, S., Filipponi, A., Brouder, C. and Calas, G. (2000) EXAFS and molecular dynamics combined study of CaO-FeO-2SiO2 glass. New insight into site significance in silicate glasses. Europhys. Lett., 49, 597–602.CrossRefGoogle Scholar
Rousselot, C. , Malugani, J.P. Mercier, R. Tachez, M. Chieux, P. Pappin, A.J. and Ingram, M.D (1995) The origins of neutron scattering prepeaks and conductivity enhancement in AgI-containing glasses. Sol. St. Ion., 78, 211–21.CrossRefGoogle Scholar
Vandenberghe, R.E., de Grave, E. and de Bakker, P.M.A. (1994) On the methodology of the analysis of Mössbauer spectra. Hyperfine Interactions, 83, 29–49.CrossRefGoogle Scholar
Watson, E.B. (1979) Zircon saturation in felsic liquids: experimental results and application to trace elements geochemistry. Contrib. Mineral. Petrol., 70, 407–19.CrossRefGoogle Scholar
Wong, J. and Angell, C.A. (1976) Glass Structure by Spectroscopy. M. Dekker Inc., New York.Google Scholar
Xu, Q., Maekawa, T., Kawamura, K. and Yokokawa, T. (1990) Local structure around Ni2+ ions in sodium borate glasses. Phys. Chem. Glasses, 31, 151–5.Google Scholar
Yarker, C.A., Johnson, P.A.V., Wright, A.C., Wong, J., Greegor, R.B., Lytle, F.W. and Sinclair, R.N. (1986) Neutron diffraction and EXAFS evidence for TiO5 units in vitreous K2O.TiO22SiO2 , J. Non-Cryst. Solids, 76, 117–36.CrossRefGoogle Scholar
Yasui, I., Hasegawa, H., Saito, Y. and Akasaka, Y. (1990) Structure of borate glasses containing heavy metal ions. J. Non-Cryst. Solids, 123, 71–4.CrossRefGoogle Scholar