Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-12T10:30:59.407Z Has data issue: false hasContentIssue false

The potash-soda-felspars. II. Some applications to petrogenesis

Published online by Cambridge University Press:  14 March 2018

Extract

In the first part of this paper (33) the effects of heat on the potash-soda-felspars were considered, and a possible explanation in terms of atomic rearrangement was proposed. In this part the experiments, and deductions from them, will be applied to some questions of petrogenesis and differentiation, particularly in connexion with the granites and granite-pegmatites.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1938

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

List of Works to which Reference is made

1. Alling, (H. L.).. The mineralography of the feldspars Part I. Journ. Geol. Chicago, 1921, vol. 29, pp. 193294. [Min. Abstr. 3–33.]Google Scholar
2. Alling, (H. L.).. The mineralography of the feldspars. Part II. Journ. Geol. Chicago, 1923, vol. 31, pp. 285305, and 353–375. [M.A. 3–33.]Google Scholar
3. Alling, (H. L.).. Perthites. Amer. Min., 1932 vol. 17, pp. 4365.Google Scholar
4. Andersen, (O.). The genesis of some types of feldspar from granite pegmatites. Norsk Geol. Tidsskr., 1928, vol. 10, pp. 116207.Google Scholar
5. Asklund, (B.). Petrological studies in the neighbeurhood of Stavsjö at Kolmårdon. Årsbok Sveriges Geol. Undersök., 1925, vol. 17 (for 1923), no. 6, pp. 1122.Google Scholar
6. Barth, (T.). Über den monoklinen Natronfeldspat. Zeits. Krist., 1929, vol. 69, pp. 476481. [M.A. 4–127.]Google Scholar
7. Becke, (F.). Über Myrmekit. Tscherm. Min. Petr. Mitt., 1908, vol. 27, pp. 377390.Google Scholar
8. Beskow, (G.). Södra Stoffjäillet im südlichen Lappland, eine petrographische und geologische Studie im zentralen Teil des Skandinavischen Hochgebirges. Årsbok Sveriges Geol. Undersök., 1929, vol. 21 (for 1927), no. 5, pp. 222279.Google Scholar
9. Bowen, (N. L.). The evolution of igneous rocks. Princetown, 1928, pp. 1322. [M.A. 4–123.]Google Scholar
10. Bowen, (N. L.). Recent high-temperature research on silicates and its significance in igneous geology. Amer. Journ. Sci., 1937, vol. 33, pp. 121. [M.A. 7–33.]Google Scholar
11. Brammall, (A.). Syntexis and differentiation. Geol. Mag. London, 1933, vol. 70, pp. 97107.Google Scholar
12. Derry, (D. R.). The genetic relationships of pegmatites, aplites, and tin veins. Geol. Mag. London, 1931, vol. 68, pp. 454475.Google Scholar
13. Dittler, (E.). Die Schmelzpunktkurve yon Kalinatronfeldspäiten: Tscherm. Min. Petr. Mitt., 1912, vol. 31, pp. 513522.Google Scholar
14. Dittler, (E.). and Köhler, (A.). Zur. Frage der Entmischbarkeit der Kali-Natron-feldspäte und über das Verhalten des Mikroklins bei hohen Temperaturen. Tscherm. Min. Petr. Mitt., 1925, vol. 38, pp. 229261. [M.A. 3–79.]Google Scholar
15. Doggett, (R. A.). The orthoclase-plagioclsse equilibrium diagram. Journ. Geol. Chicago, 1929, vol. 37, pp. 712716. [M.A. 5–67.]Google Scholar
16. Doggett, (R. A.). afterwards Tersaghi, (R. D.). The origin of the potash-rich rocks. Amer. Journ. Sci., 1935, ser. 5, vol. 29, pp. 369380. [M.A. 6–121.]Google Scholar
17. Fersman, (A. E.). Die Schriftstruktur der Granitpegmatite und ihre Entstehung. Zeits. Krist., 1929, vol. 69, pp. 77104. [M.A. 4–43.]Google Scholar
18. Fersman, (A. E.). Über die geochemisch-genetische Klassifikation der Granitpegmatite. Tscherm. Min. Petr. Mitt., 1931, vol. 41, pp. 6483 and 200–213. [M.A. 4–511.]Google Scholar
19. Gilluly, (J.). Replacement origin of the albite granite near Sparta, Oregon. U.S. Geol. Surv. Prof. Paper 175-C, 1933, pp. 6581.Google Scholar
20. Goldschmidt, (V. M.). Stammestypen der Eruptivgesteine. Vid.-Selsk. Skrifter, Kristiania, Mat.-naturv. Kl., 1922, no. 10, pp. 67.Google Scholar
21. Greig, (J. W.). Immiscibility in silicate melts. Amer. Journ. Sci., 1927, ser. 5, vol. 13, pp. 114 and 133–154. [M.A. 3–289.]Google Scholar
22. Kôzu, (S.) and Saiki, (S.). The thermal expansion of alkali-felspars. Sci. Rep: Tôhoku Imp. Univ., Ser. 3, 1925, vol. 2, pp. 202238. [M.A. 3–148.]Google Scholar
23. Landes, (K. K.). Origin and classification of pegmatites. Amer. Min., 1933, vol. 18, pp. 3356 and 95–103. [M.A. 5–368.]Google Scholar
24. Mäkinen, (E.). Über die Alkalifeldspäte. Geol. För. Förh. Stockholm, 1917, vol. 39, pp. 121184.CrossRefGoogle Scholar
25. Mäkinen, (E.). Die Granitpegmatite von Tammela in Finnland und ihre Minerale. Bull. Comm. Géol. Finlande, 1913, no. 35, pp. 1101.Google Scholar
26. Mallard, (E.). Explication des phénomènes optiques anomaux. Ann. des Mines, Paris, 1876, ser. 7, Mém. vol. 10, pp. 157160.Google Scholar
27. Michel-Lévy, (A.). Identité probable du microcline et de l'orthose. Bull. Soc. Min. France, 1879, vol. 2, pp. 135139.Google Scholar
28. Morey, (G. W.) and Bowen, (N. L.). The melting of potash feldspar. Amer. Journ. Sci., 1922, ser. 5, vol. 4, pp. 121. [M.A. 3–61.]Google Scholar
29. Schairer, (J. F.) and Bowen, (N. L.). Preliminary report on equilibrium-relations between feldspathoids, alkali-feldspars, and silica. Trans. Amer. Geophys. Union, 16th Ann. Meeting, 1935, pp. 325328.CrossRefGoogle Scholar
30. Schaller, (W. T.). The genesis of lithium pegmatites. Amer. Journ. Sci., 1925, ser. 5, vol. 10, pp. 269279. [M.A. 3–36.]Google Scholar
31. Schaller, (W. T.) Mineral replacements in pegmatites. Amer. Min., 1927, vol. 12, pp. 5963. [M.A. 3–292.]Google Scholar
32. Sederholm, (J. J.). On synantetic minerals. Bull. Comm. Géol. Finlande, 1916, no. 48, pp. 134139.Google Scholar
33. Spencer, (E.). The potash-soda-felspars. I. Thermal stability. Min. Mag., 1937, vol. 24, pp. 453494.Google Scholar
34. Sundius, (N.). On the differentiation of the alkalies in aplites ·and aplitic granites. Årsbok Sveriges Geol. Undersök., 1926, vol. 19 (for 1925), no. 3, pp. 135.Google Scholar
35. Vogt, (J. H. L.). Physikalisch-chemische Gesetze der Krystallisationsfolge in Eruptivgesteinen. Tscherm. Min. Petr. Mitt., 1906, vol. 24, pp. 437542.Google Scholar
36. Vogt, (J. H. L.). The physical chemistry of the crystallization and magmatic differentiation of igneous rocks Part V. Journ. Geol. Chicago, 1922, vol. 30, p. 614, pp. 611–630.Google Scholar
37. Vogt, (J. H. L.). The physical chemistry of magmatic differentiation of igneous rocks. Part II. Skrift. Norske Vidensk.-Akad., Mat.-naturv. KI., 1926, no. 4, pp. 1101. [M.A. 3–379.]Google Scholar
38. Vogt, (J. H. L.). The physical chemistry of the magmatio differentiation of igneous rocks. Part III, 2nd half. Skrift. Norske Vidensk.-Akad., Mat.-naturv. Kl., 1931, for 1930, no. 3, pp. 1242;Google Scholar
39. Vogt, (J. H. L.). On the terms eutectic, cotectic, peritectic, anchi-eutectic, anchi-eotectic, etc., and their importance in petrogenesis. Journ. Geol. Chicago, 1931, vol 39, pp. 401431.Google Scholar
40. Walker, (T. L.). The geology of Kalahandi State, Central Provinces. Mem. Geol. Surv. India, 1902, vol. 33, part 3, pp. 122.Google Scholar
41. Warren, (C. H.). A quantitative study of certain perthitio feldspars. Proc. Amer. Acad. Arts and Sci., 1915, vol. 51, pp. 127154. [M.A. 1–279.]Google Scholar
42. Wright, (F. E.) and Larsen, (E. S.). Quartz as a geologic thermometer. Amer. Journ. Sci., 1909, ser. 4, vol. 27, pp. 421-447.Google Scholar