Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-07-26T16:31:23.488Z Has data issue: false hasContentIssue false

On the existence of hydronium hydrates H9O+4 and H15O+7 in minerals

Published online by Cambridge University Press:  14 March 2018

Jan Kubisz*
Affiliation:
Dept. of Mineralogy and Petrology, Academy of Mining and Metallurgy, Cracow, Poland

Summary

Properties and possible structures of hydronium trihydrate H9O+4 and hexahydrate H15O+7 are considered. From the 2330 minerals listed in Strunz's mineralogical tables nineteen were selected that appear to contain H+.4H2O or H+.7H2O, and the possibility of discrete H9O+4 or H15O+7 groupings existing in their crystal lattice is discussed. From a crystallochemical point of view the most probable examples of hydronium hydrate compounds are layer lattice minerals like H-montmorillonite, H-vermiculite, troegerite, H-meta-autunite, sabugalite, and hewettite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1966

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bethell, (D. E.) and Sheppard, (N.), 1953. Journ Chem. Phys., vol. 21, p. 1421.CrossRefGoogle Scholar
Brophy, (G. P.) and Sheridan, (M. F.), 1965. Amer. Min., vol. 50, p. 1595.Google Scholar
Brown, (G.), 1961. The X-ray identifieation and crystal structures of clay minerals, 2nd edn., p. 172. London, Min. Soc.Google Scholar
Coulson, (C. A.), 1959. Hydrogen bonding, edited by Hasži, D.. Pergamon Press.Google Scholar
Grahn, (R.), 1961. Arkiv Fysik, Bd. 19, p. 147.Google Scholar
Grahn, (R.),1962. Ibid., Bd. 12, p. 13.Google Scholar
Halla, (F.) and Van Tassel, (R.), 1956. Naturwiss., vol. 43, p. 80.Google Scholar
Janik, (J. M.), 1964. Institute of Nuclear Physics, Cracow, Report no. 360.Google Scholar
Kurise, (J.), 1961a. Bull. Acad. Polon. Sci., Sér. sci. géol. géogr., vol. 9, p. 195.Google Scholar
Kurise, (J.), 1961b. Sprawozd. z posiedz. Komisji Oddz.PAN w Krakowie, p. 448.Google Scholar
Kurise, (J.), 1964. Prace Geologiczne no. 22.Google Scholar
Luzzati, (V.), 1951. Acta Cryst., vol. 4, p. 239.Google Scholar
Richards, (R. N.) and Smith, (J. A.), 1951. Trans. Faraday Soc., vol. 47, p. 1261.Google Scholar
Ross (Malcolm), and Evans, (H. T.), 1964. Amer. Min., vol. 49, p. 1578.Google Scholar
Ross (Malcolm), and Evans, (H. T.), 1965. Ibid., vol. 50, p. 1.Google Scholar
Rudolph, (J.) and Zimmermann, (H.), 1964. Zeits. physikal. Chem., Neue Folge, Bd. 43, p. 311.Google Scholar
Samoilov (O. Ya.), , , 1957. Discussions Faraday Soc., no. 24. p. 141.Google Scholar
Savoie, (R.), and Giguére, (P. A.), 1964. Journ. Chem. Phys., vol. 41, p. 2698.Google Scholar
[Shishkin], (N. V.)] (Journ. gem Chem.) vol. 21, p. 456.Google Scholar
Smith, (D. K.), Gruner, (J. W.), and Lipscomb (W. N.), , 1957. Amer. Min., vol. 42, p. 594.Google Scholar
Strunz, (H.), 1966. Mineralogische Tabellen, 4th edn, Leipzig.Google Scholar
Taylor, (R. C.) and Vidale, (G. L.), 1956. Journ. Amer. Chem. Soc., vol. 78, p. 5999.Google Scholar
White, (J. L.) and Burns, (A. F.), 1963. Science, vol. 141, p. 800.Google Scholar
Wicke, (E.), Emnn, (M.), and Ackermann, (Th.), 1954. Zeits. physikal. Chem., Neue Folge, Bd. l, p. 340.Google Scholar