Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T09:31:34.359Z Has data issue: false hasContentIssue false

Imaging Mechanisms in Dynamic Force Microscopy of Polymers

Published online by Cambridge University Press:  14 March 2018

Greg D. Haugstad*
Affiliation:
University of Minnesota, Center for Interfacial Engineering

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Applications of scanning force microscopy (SFM) in polymer studies have flourished in this decade, reflecting (a) sensitivity to both structure and properties on the nanometer scale, and (b) ease of operation in ambient environments without sample pretreatment. One drawback in SFM of soft materials has been damage incurred during the imaging process. The problem was alleviated by the development of dynamic force microscopy (DFM) in which the probe spends little or no time in contact with the polymer surface and shear forces are minimized. This mode of operation has been dubbed "tapping", "intermittent contact", "non-contact", "near-contact", etc. As studies proliferated, it became apparent that different researchers were using different terms to refer to the same apparent imaging mechanism, or the same term to refer to different imaging mechanisms.

Type
Research Article
Copyright
Copyright © Microscopy Society of America 1999

References

1) Maganov, S. N.; Reneker, D. H. Annu. Rev. Mater. Sci. 1997, 27, 175-222.Google Scholar
2) Anczykowski, B.; Kruger, D.; Babcock, K. L; Fuchs, H. Uitramicroscopy 1996, 66, 251.Google Scholar
3) Kuhle, A.; Sorensen, A. H.; Bohr, J. J. Appl. Phys. 1997, 81, 6562-6569.CrossRefGoogle Scholar
4) Garcia, R.; Tamayo, J.; Caileja, M.; Garcia, F. Appl. Phys. A 1998, 66, S309-S312.Google Scholar
5) Anczykowski, B.; Cleveland, J. P.; Kruger, D.; Elings, V.; Fuchs, H. Appl. Phys. A 1998, 65, S885-S889.Google Scholar
6) Behrend, O. P.; Oulevey, F.; Gourdon, D.; Dupas, E.; Kulik, A. J.; Gremaud, G.; Burnham, N. A. Appl Phys. A 1998, 65, S219- S221.Google Scholar
7) Kuhle, A.; Sorensen, A. H.; Zandbergen, J. B.; Bohr, J. Appl. Phys. A 1998, 66, S329-S332.Google Scholar
8) Boisgard, R.; Michel, D.; Aime, J. P. Surf. Sci. 1998, 401, 199-205.CrossRefGoogle Scholar
9) Luna, M.; Colchero, J.; Baro, A. M. Appl. Phys. Lett. 1998, 72, 3461-3463.Google Scholar
10) Haugstad, G.; Jones, R. R. Uitramicroscopy 1999, 76, 77-86.Google Scholar
11) Bar, G.; Brandsch, R.; Whangbo, M.-H. Surf Sci. Lett. 1999, 422, L192.Google Scholar
12) Brandsch, R.; Bar, G.; Whangbo, M.-H. Langmuir 1997, 13, 6349-6353.Google Scholar
13) Spatz, J. P.; Sheiko, S.; Moller, M.; Winkler, R. G.; Reineker, P.; Marti, O. Langmuir 1997, 13, 4699-4703.Google Scholar
14) Tamayo, J.; Garcia, R. Appl. Phys. Lett. 1998, 73, 2926-2928.Google Scholar
15) Cleveland, J. P.; Anczykowski, B.; Schmid, A. E.; Elings, V. B. Appl. Phys. Lett. 1998, 72, 2613-2615.Google Scholar
16) Hunt, J. P.; Sand, D. Appl. Phys. Lett. 1998, 72, 2969-2971.Google Scholar
17) Wang, L. Appl. Phys. Lett. 1998, 73, 3781-3783.Google Scholar
18) Finch, C. A. Polyvinyl Alcohol: Properties and Applications; Wiley: London, 1973.Google Scholar