An anomaly in the dependence of the kinetics of grain growth on the temperature for strontium titanate (ST) ceramics is reported in this work. It consists of a decrease of the grain size with increasing sintering temperature. Recently, a drop in the grain boundary mobility of ST in the same temperature range was reported. These observations imply an unusual decrease of the grain size with the increase of the sintering temperature, in agreement with our present results. Although the mobility drop was related to structural changes in grain boundaries, the exact mechanism involved is still unknown. The understanding of this anomaly may offer an alternative way of controlling the microstructure and tuning the dielectric response of ST based compositions without the use of dopants. ST is characterized by high dielectric permittivity, high tunability and low dielectric losses, and is thus a particularly interesting material for capacitor or tunable microwave devices. These properties are very dependent on the stoichiometry, structure and microstructure, in which the role of grain boundaries is fundamentally important. Indeed, increasing attention has been paid to grain boundary structures and nonstoichiometry and to its relation with microstructure and electrical properties. Densification proceeds faster with decreasing Sr/Ti ratio (Ti-rich compositions). Sr-rich samples show narrow grain size distributions, while Ti excess favors enlarged grain size distributions and faceting of the grain boundaries.