Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T14:39:12.148Z Has data issue: false hasContentIssue false

Understanding the Effects of Graphene Coating on the Electrostatic Field at the Tip of an Atom Probe Tomography Specimen

Published online by Cambridge University Press:  30 July 2021

Florant Exertier*
Affiliation:
Deakin University, Institute for Frontier Materials, Geelong, VIC 3216, Australia
Jiangting Wang
Affiliation:
Deakin University, Institute for Frontier Materials, Geelong, VIC 3216, Australia
Jing Fu
Affiliation:
Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
Ross K.W. Marceau*
Affiliation:
Deakin University, Institute for Frontier Materials, Geelong, VIC 3216, Australia
*
*Corresponding authors: Florant Exertier, E-mail: fexertier@deakin.edu.au; Ross K.W. Marceau, E-mail: ross.marceau@deakin.edu.au
*Corresponding authors: Florant Exertier, E-mail: fexertier@deakin.edu.au; Ross K.W. Marceau, E-mail: ross.marceau@deakin.edu.au
Get access

Abstract

As a three-dimensional characterization method, atom probe tomography can provide key information that other methods cannot offer. Conductive coatings have proved to be an effective way for biological samples, and nonconductive samples in general, to be analyzed using voltage-pulsed atom probe tomography. In this study, we analyzed the effects of graphene coating on an electrically conductive material and were able to confirm the detection of carbon atoms. We compare quantitative electrostatic field metrics for a single-coated and a multi-coated specimen and measure both a reduced voltage after graphene coating and lowered charge-state ratios for different ion species, suggesting a lowered evaporation field related to the graphene coating. This information will be instructive for future studies on graphene-coated, nonconductive biological specimens.

Type
Development and Computation
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adineh, VR, Marceau, RKW, Chen, Y, Si, KJ, Velkov, T, Cheng, W, Li, J & Fu, J (2017). Pulsed-voltage atom probe tomography of low conductivity and insulator materials by application of ultrathin metallic coating on nanoscale specimen geometry. Ultramicroscopy 181, 150159.CrossRefGoogle ScholarPubMed
Adineh, VR, Marceau, RKW, Velkov, T, Li, J & Fu, J (2016). Near-atomic three-dimensional mapping for site-specific chemistry of ‘superbugs’. Nano Lett 16(11), 71137120.CrossRefGoogle Scholar
Adineh, VR, Zheng, C, Zhang, Q, Marceau, RKW, Liu, B, Chen, Y, Si, KJ, Weyland, M, Velkov, T, Cheng, W, Li, J & Fu, J (2018). Graphene-enhanced 3D chemical mapping of biological specimens at near-atomic resolution. Adv Funct Mater 28(32), 1801439.CrossRefGoogle Scholar
Currie, LA (1968). Limits for qualitative detection and quantitative determination. Application to radiochemistry. Anal Chem 40(3), 586593.CrossRefGoogle Scholar
Devaraj, A, Perea, DE, Liu, J, Gordon, LM, Prosa, TJ, Parikh, P, Diercks, DR, Meher, S, Kolli, RP, Meng, YS & Thevuthasan, S (2018). Three-dimensional nanoscale characterisation of materials by atom probe tomography. Int Mater Rev 63(2), 68101.CrossRefGoogle Scholar
Eder, K, Felfer, PJ, Gault, B, Ceguerra, AV, La Fontaine, A, Masters, AF, Maschmeyer, T & Cairney, JM (2017). A new approach to understand the adsorption of thiophene on different surfaces: An atom probe investigation of self-assembled monolayers. Langmuir 33(38), 95739581.CrossRefGoogle ScholarPubMed
Gault, B, Moody, MP, Cairney, JM & Ringer, SP (2012). Atom Probe Microscopy. New York, NY: Springer Science & Business Media.CrossRefGoogle Scholar
Gault, B, Moody, MP, De Geuser, F, La Fontaine, A, Stephenson, LT, Haley, D & Ringer, SP (2010). Spatial resolution in atom probe tomography. Microsc Microanal 16(1), 99110.CrossRefGoogle ScholarPubMed
Gault, B, Moody, MP, de Geuser, F, Tsafnat, G, La Fontaine, A, Stephenson, LT, Haley, D & Ringer, SP (2009). Advances in the calibration of atom probe tomographic reconstruction. J Appl Phys 105(3), 034913.CrossRefGoogle Scholar
Gault, B, Vurpillot, F, Vella, A, Gilbert, M, Menand, A, Blavette, D & Deconihout, B (2006). Design of a femtosecond laser assisted tomographic atom probe. Rev Sci Instrum 77(4), 043705.CrossRefGoogle Scholar
Gordon, LM, Cohen, MJ & Joester, D (2013). Towards atom probe tomography of hybrid organic-inorganic nanoparticles. Microsc Microanal, 19(S2), 952953.Google Scholar
Gordon, LM, Cohen, MJ, MacRenaris, KW, Pasteris, JD, Seda, T & Joester, D (2015). Amorphous intergranular phases control the properties of rodent tooth enamel. Science 347(6223), 746750.CrossRefGoogle ScholarPubMed
Gordon, LM & Joester, D (2011). Nanoscale chemical tomography of buried organic–inorganic interfaces in the chiton tooth. Nature 469, 194.CrossRefGoogle ScholarPubMed
Gordon, LM & Joester, D (2015). Mapping residual organics and carbonate at grain boundaries and the amorphous interphase in mouse incisor enamel. Front Physiol 6, 57.CrossRefGoogle ScholarPubMed
Gordon, LM, Tran, L & Joester, D (2012). Atom probe tomography of apatites and bone-type mineralized tissues. ACS Nano 6(12), 1066710675.CrossRefGoogle ScholarPubMed
Haydock, R & Kingham, DR (1980). Post-ionization of field-evaporated ions. Phys Rev Lett 44(23), 1520.CrossRefGoogle Scholar
Kellogg, GL & Tsong, TT (1980). Pulsed-laser atom-probe field-ion microscopy. J Appl Phys 51(2), 11841193.CrossRefGoogle Scholar
Kelly, TF, Nishikawa, O, Panitz, JA & Prosa, TJ (2009). Prospects for nanobiology with atom-probe tomography. MRS Bull 34(10), 744750.CrossRefGoogle Scholar
Kingham, DR (1982). The post-ionization of field evaporated ions: A theoretical explanation of multiple charge states. Surf Sci 116(2), 273301.CrossRefGoogle Scholar
La Fontaine, A, Zavgorodniy, A, Liu, H, Zheng, R, Swain, M & Cairney, J (2016). Atomic-scale compositional mapping reveals Mg-rich amorphous calcium phosphate in human dental enamel. Sci Adv 2(9), e1601145.CrossRefGoogle ScholarPubMed
Langelier, B, Wang, X & Grandfield, K (2017). Atomic scale chemical tomography of human bone. Sci Rep 7, 39958.CrossRefGoogle ScholarPubMed
Larson, D, Prosa, T, Bunton, J, Olson, D, Lawrence, D, Oltman, E, Strennin, S & Kelly, T (2013 a). Improved mass resolving power and yield in atom probe tomography. Microsc Microanal 19(S2), 994995.CrossRefGoogle Scholar
Larson, DJ, Prosa, T, Ulfig, RM, Geiser, BP & Kelly, TF (2013 b). Local Electrode Atom Probe Tomography. New York, USA: Springer Science.CrossRefGoogle Scholar
McCarroll, IE, Bagot, PAJ, Devaraj, A, Perea, DE & Cairney, JM (2020). New frontiers in atom probe tomography: A review of research enabled by cryo and/or vacuum transfer systems. Mater Today Adv 7, 100090.CrossRefGoogle ScholarPubMed
Miller, MK & Forbes, RG (2014). Atom-Probe Tomography: The Local Electrode Atom Probe. New York: Springer.CrossRefGoogle Scholar
Narayan, K, Prosa, TJ, Fu, J, Kelly, TF & Subramaniam, S (2012). Chemical mapping of mammalian cells by atom probe tomography. J Struct Biol 178(2), 98107.CrossRefGoogle ScholarPubMed
Narayan, K & Subramaniam, S (2015). Focused ion beams in biology. Nat Methods 12(11), 1021.CrossRefGoogle ScholarPubMed
Perea, DE, Liu, J, Bartrand, J, Dicken, Q, Thevuthasan, ST, Browning, ND & Evans, JE (2016). Atom probe tomographic mapping directly reveals the atomic distribution of phosphorus in resin embedded ferritin. Sci Rep 6, 22321.CrossRefGoogle ScholarPubMed
Prosa, TJ, Kostrna Keeney, S & Kelly, TF (2010). Atom probe tomography analysis of poly(3-alkylthiophene)s. J Microsc 237(2), 155167.CrossRefGoogle ScholarPubMed
Proudian, AP, Jaskot, MB, Diercks, DR, Gorman, BP & Zimmerman, JD (2019). Atom probe tomography of molecular organic materials: Sub-dalton nanometer-scale quantification. Chem Mater 31(7), 22412247.CrossRefGoogle Scholar
Qiu, S, Garg, V, Zhang, S, Chen, Y, Li, J, Taylor, A, Marceau, RKW & Fu, J (2020 a). Graphene encapsulation enabled high-throughput atom probe tomography of liquid specimens. Ultramicroscopy 216, 113036.CrossRefGoogle ScholarPubMed
Qiu, S, Zheng, C, Garg, V, Chen, Y, Gervinskas, G, Li, J, Dunstone, MA, Marceau, RKW & Fu, J (2020 b). Three-Dimensional chemical mapping of a single protein in the hydrated state with atom probe tomography. Anal Chem 92(7), 51685177.CrossRefGoogle ScholarPubMed
Qiu, S, Zheng, C, Zhou, Q, Dong, D, Shi, Q, Garg, V, Cheng, W, Marceau, RKW, Sha, G & Fu, J (2020 c). Direct imaging of liquid–nanoparticle interfaces with atom probe tomography. J Phys Chem C 124(35), 1938919395.CrossRefGoogle Scholar
Rusitzka, KAK, Stephenson, LT, Szczepaniak, A, Gremer, L, Raabe, D, Willbold, D & Gault, B (2018). A near atomic-scale view at the composition of amyloid-beta fibrils by atom probe tomography. Sci Rep 8(1), 17615.CrossRefGoogle ScholarPubMed
Schneider, CA, Rasband, WS & Eliceiri, KW (2012). NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7), 671675.CrossRefGoogle ScholarPubMed
Schreiber, DK, Perea, DE, Ryan, JV, Evans, JE & Vienna, JD (2018). A method for site-specific and cryogenic specimen fabrication of liquid/solid interfaces for atom probe tomography. Ultramicroscopy 194, 8999.CrossRefGoogle ScholarPubMed
Stephenson, LT, Szczepaniak, A, Mouton, I, Rusitzka, KAK, Breen, AJ, Tezins, U, Sturm, A, Vogel, D, Chang, Y, Kontis, P, Rosenthal, A, Shepard, JD, Maier, U, Kelly, TF, Raabe, D & Gault, B (2018). The Laplace project: An integrated suite for preparing and transferring atom probe samples under cryogenic and UHV conditions. PLoS ONE 13(12), e0209211.CrossRefGoogle ScholarPubMed
Sundell, G, Hulander, M, Pihl, A & Andersson, M (2019). Atom probe tomography for 3D structural and chemical analysis of individual proteins. Small 15(24), 1900316.CrossRefGoogle ScholarPubMed
Taniguchi, M, Nishikawa, O & Ikai, A (2012). Atomic level analysis of biomolecules by a scanning atom probe. Surf Interface Anal 44(6), 721723.CrossRefGoogle Scholar
Supplementary material: File

Exertier et al. supplementary material

Exertier et al. supplementary material 1

Download Exertier et al. supplementary material(File)
File 6.1 KB

Exertier et al. supplementary material

Exertier et al. supplementary material 2

Download Exertier et al. supplementary material(Audio)
Audio 424.1 KB
Supplementary material: File

Exertier et al. supplementary material

Exertier et al. supplementary material 3

Download Exertier et al. supplementary material(File)
File 2.2 MB