Hostname: page-component-84b7d79bbc-fnpn6 Total loading time: 0 Render date: 2024-07-28T14:30:01.244Z Has data issue: false hasContentIssue false

Ultimate Resolution Limits - Nanotips and Atom Lenses

Published online by Cambridge University Press:  02 July 2020

J.C.H. Spence*
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, AZ85287-1504
Get access

Extract

The most useful classical definition of resolution is a property of an instrument alone, independent of the sample. Because of this it is not possible to define resolution simply for HREM or for most of the new microscopies. For weak phase objects, the best current HREM machines offer a point resolution very close to 0.lnm . For the first time, recent off-axis electron holography has extended resolution beyond the point resolution limit, in fulfillment of Gabor’s original aim. Other recent approaches to super-resolution have used through-focus series under highly coherent conditions, sums of images obtained under different illumination angles, dark-field STEM imaging with high-angle detectors,thin annular detectors in STEM, or the use of coherent nanodiffraction patterns. Aberration correction by electron optical means has undergone a recent revival, and the effects of third-order astigmatism are under study. If third-order spherical aberration is corrected, the projected charge density approximation may be more useful than the weak-phase object approximation, since the Scherzer focus then no longer applies.

Type
The Limits of Image Resolution: Seeing is Believing
Copyright
Copyright © Microscopy Society of America 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Spence, J., Experimental high resolution electron microscopy. (Oxford Univ. Press, N. Y.) 1988Google Scholar
2.Ichinose, H.. Int. Table Cryst. Vol C. (1997) In press.Google Scholar
3Ochowski, A.,Rau, W.D. and Lichte, H., Phys. Rev. Letts. 74 (1995) 399.10.1103/PhysRevLett.74.399CrossRefGoogle Scholar
4Coene, W., Janssen, G., Op de Beeck, M.and Van Dyck, D., Phys Rev. Letts 69 (1992) 3743.10.1103/PhysRevLett.69.3743CrossRefGoogle Scholar
5Humphreys, C. and Spence, J., Optik 58 (1981) 125.Google Scholar
6Kirkland, A., Saxton, W., Chau, K., Tsuno, K. and K. M., , Ultramic. 57 (1995) 355.10.1016/0304-3991(94)00191-OCrossRefGoogle Scholar
7Pennycook, S.J. and Boatner, L.A., Nature 336 (1988) 565.10.1038/336565a0CrossRefGoogle Scholar
8Cowley, J.M., Ultramic. 65 (1996) 61.10.1016/S0304-3991(96)00056-3CrossRefGoogle Scholar
9Konnert, J., Antonio, D', Cowley, J., Higgs, A. and Ou, H.-J., Ultramic. 30 (1989) 371.10.1016/0304-3991(89)90068-5CrossRefGoogle Scholar
10Krivanek, O., Krivanek, O., Heider, M., Rose, H.; Personal communication.(1997)Google Scholar
11Nellist, P.D., McCallum, B. and Rodenburg, J., nature 374 (1995) 630.10.1038/374630a0CrossRefGoogle Scholar
12Spence, J.C.H., Acta Cryst. A. In press (1997)Google Scholar
13Spence, J.C.H., Qian, W. and Melmed, A., Ultramicros. 52 (1993) 473.10.1016/0304-3991(93)90063-4CrossRefGoogle Scholar
14Spence, J.C.H., Zhang, X., Weierstall, U., Zuo., J.M. Surf. Rev. and Letts In press (1997)Google Scholar
15Spence, J.C.H.. Micron. In press (1997)Google Scholar
16Scheinfein, M., Qian, W. and Spence, J.C.H., J. Appl. Phys. 73 (1993) 2057.10.1063/1.353151CrossRefGoogle Scholar
17Cowley, J.M., Spence, J.C.H. and Smirnov, V.V., Ultramic. in press (1997)Google Scholar
18 Supported by N.S.F. award DMR9526100.Google Scholar