Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T14:22:10.033Z Has data issue: false hasContentIssue false

Testate Amoebae Examined by Confocal and Two-Photon Microscopy: Implications for Taxonomy and Ecophysiology

Published online by Cambridge University Press:  19 November 2010

Zuzana Burdíková*
Affiliation:
Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, CZ-14220 Prague 4, Czech Republic Institute of Geology and Paleontology, Faculty of Science, Charles University, Albertov 6, CZ-12843 Prague 2, Czech Republic
Martin Čapek
Affiliation:
Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, CZ-14220 Prague 4, Czech Republic Faculty of Biomedical Engineering, Czech Technical University in Prague, nám. Sítná 3105, CZ-27201 Kladno, Czech Republic
Pavel Ostašov
Affiliation:
Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
Jiří Machač
Affiliation:
Institute of Botany, Academy of Sciences of the Czech Republic, v.v.i., Zámek 1, CZ-25243 Průhonice, Czech Republic
Radek Pelc
Affiliation:
Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
Edward A.D. Mitchell
Affiliation:
Laboratory of Soil Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
Lucie Kubínová
Affiliation:
Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
*
Corresponding author. E-mail: burdikova@biomed.cas.cz.
Get access

Abstract

Testate amoebae (TA) are a group of free-living protozoa, important in ecology and paleoecology. Testate amoebae taxonomy is mainly based on the morphological features of the shell, as examined by means of light microscopy or (environmental) scanning electron microscopy (SEM/ESEM). We explored the potential applications of confocal laser scanning microscopy (CLSM), two photon excitation microscopy (TPEM), phase contrast, differential interference contrast (DIC Nomarski), and polarization microscopy to visualize TA shells and inner structures of living cells, which is not possible by SEM or environmental SEM. Images captured by CLSM and TPEM were utilized to create three-dimensional (3D) visualizations and to evaluate biovolume inside the shell by stereological methods, to assess the function of TA in ecosystems. This approach broadens the understanding of TA cell and shell morphology, and inner structures including organelles and endosymbionts, with potential implications in taxonomy and ecophysiology.

Type
Fluorescence and Confocal Microscopies
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aoki, Y., Hoshino, M. & Matsubara, T. (2007). Silica and testate amoebae in a soil under pine-oak forest. Geoderma 142, 2935.CrossRefGoogle Scholar
Bernhard, J.M. (2000). Distinguishing live from dead foraminifera: Methods review and proper applications. Micropaleontology 46(S1), 3846.Google Scholar
Bernhard, J.M., Blanks, J.K., Hintz, Ch.J. & Chandler, G.T. (2004). Use of the fluorescent calcite marker calcein to label foraminiferal tests. J Foraminiferal Res 34, 96101.CrossRefGoogle Scholar
Beyens, L. & Meisterfeld, R. (2001). Protozoa: Testate amoebae. In Tracking Environmental Change Using Lake Sediments: Volume 3: Terrestrial, Algal, and Siliceous Indicators, Smol, J.P., Birks, H.J.B. & Last, W.M. (Eds.), pp. 121153. Dordrecht, Netherlands: Kluwer Academic Publishers.Google Scholar
Booth, R.K. (2002). Testate amoebae as paleoindicators of surface-moisture changes on Michigan peatlands: Modern ecology and hydrological calibration. J Paleolimn 28, 329348.CrossRefGoogle Scholar
Čapek, M., Brůža, P., Janáček, J., Karen, P., Kubínová, L. & Vágnerová, R. (2009). Volume reconstruction of large tissue specimens from serial physical sections using confocal microscopy and correction of cutting deformations by elastic registration. Microsc Res Tech 72, 110119.CrossRefGoogle ScholarPubMed
Čapek, M., Janáček, J. & Kubínová, L. (2006). Methods for compensation of the light attenuation with depth of images captured by a confocal microscope. Microsc Res Tech 69, 624635.CrossRefGoogle ScholarPubMed
Charrière, F., Pavillon, N., Colomb, T., Depeursinge, Ch., Heger, T.J., Mitchell, E.A.D, Marquet, P. & Rappaz, B. (2006). Living specimen tomography by digital holographic microscopy: Morfometry of testate amoeba. Opt Express 14, 70057013.CrossRefGoogle Scholar
Cruz-Orive, L.M. (1997). Stereology of single objects. J Microsc (Oxford, U.K.) 186, 93107.CrossRefGoogle Scholar
Denk, W., Strickler, J.H. & Webb, W.W. (1990). Two-photon laser scanning fluorescence microscopy. Science 248, 7376.CrossRefGoogle ScholarPubMed
Diaspro, A. (2002). Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances. New York: Wiley-Liss.Google Scholar
Difato, F., Mazzone, F., Scaglione, S., Fato, M., Beltrame, F., Kubínová, L., Janáček, J., Ramoino, P., Vicidomini, G. & Diaspro, A. (2004). Improvement in volume estimation from confocal sections after image deconvolution. Microsc Res Tech 64, 151155.CrossRefGoogle ScholarPubMed
Foissner, W. (1997). Protozoa as bioindicators in agroecosystems, with emphasis on farming practices, biocides, and biodiversity. Agric Ecosyst Environ 62, 93103.CrossRefGoogle Scholar
Foissner, W. (1999). Soil protozoa as bioindicators: Pros and cons, methods, diversity, representative examples. Agric Ecosyst Environ 74, 95112.CrossRefGoogle Scholar
Gilbert, D., Amblard, C., Boudier, G. & Frances, A.J. (1998). The microbial loop at the surface of a peatland: Structure, function and impact of nutrient input. Microb Ecol 35, 8393.CrossRefGoogle ScholarPubMed
González-Robles, A., Castañón, G., Hernández-Ramírez, V.I., Salazar-Villatoro, L., González-Lázaro, M., Omaña-Molina, M., Talamás-Rohana, P. & Martínez-Palomo, A. (2008). Acanthamoeba castellanii: Identification and distribution of actin cytoskeleton. Exp Parasitol 119, 411417.CrossRefGoogle ScholarPubMed
Heger, T.J., Mitchell, E.A.D., Todorov, M., Golemansky, V., Lara, E. & Pawlowski, J. (2010). Molecular phylogeny of euglyphid testate amoebae (Cercozoa: Euglyphida) suggest transitions between marine supralittoral and freshwater/terrestrial environments are infrequent. Mol Phylogenet Evol 55, 113122.CrossRefGoogle ScholarPubMed
King, M.A. (2000). Detection of dead cells and measurement of cell killing by flow cytometry. J Immunol Methods 234, 155166.CrossRefGoogle Scholar
Kubínová, L. & Janáček, J. (1998). Estimating surface area by the isotropic fakir method from thick slices cut in an arbitrary direction. J Microsc (Oxford, U.K.) 191, 201211.CrossRefGoogle Scholar
Kubínová, L. & Janáček, J. (2001). Confocal microscopy and stereology: Estimating volume, number, surface area and length by virtual test probes applied to three-dimensional images. Microsc Res Tech 53, 425435.CrossRefGoogle ScholarPubMed
Kubínová, L., Janáček, J. & Krekule, I. (2002). Stereological methods for estimating geometrical parameters of microscopic structure by three dimensional imaging. In Confocal and Two Photon Microscopy: Foundations, Applications, and Advances, Diaspro, A. (Ed.), pp. 299332. New York: Wiley-Liss.Google Scholar
Lutze, G.F. & Altenbach, A.V. (1991). Technik und Signifikanz der Lebenfärbung der benthischer Foraminiferen mit Bengalrot. Geol Jahr A128, 251265(with English abstract).Google Scholar
Madrid, R.E. & Felice, C.J. (2005). Microbial biomass estimation. Crit Rev Biotechnol 25, 97112.CrossRefGoogle ScholarPubMed
Martin, R.E. & Steinker, D.C. (1973). Evaluation of techniques for recognition of living foraminifera. Compass Sigma Gamma Epsilon 50, 2630.Google Scholar
Matsumoto, B. (2002). Cell Biological Applications of Confocal Microscopy. San Diego, CA: Academic Press.Google Scholar
Meisterfeld, R. (2002a). Order Arcellinida Kent, 1880. In An Illustrated Guide to the Protozoa, 2nd ed., Lee, J.J., Leedale, G.F. & Bradbury, P. (Eds.), 2, pp. 827860. Lawrence, KS: Society of Protozoologists.Google Scholar
Meisterfeld, R. (2002b). Testate amoebae with filopodia. In An Illustrated Guide to the Protozoa, 2nd ed., Lee, J.J., Leedale, G.F. & Bradbury, P. (Eds.), 2, pp. 10541084. Lawrence, KS: Society of Protozoologists.Google Scholar
Michels, J. & Schnack-Schiel, S.B. (2005). Feeding in dominant Antarctic copepods—Does the morphology of the mandibular gnathobases relate to diet? Mar Biol (Heidelberg, Ger.) 146, 483495.CrossRefGoogle Scholar
Mitchell, E.A.D., Charman, D.J. & Warner, B.G. (2008a). Testate amoebae analysis in ecological and paleoecological studies of wetlands: Past, present and future. Biodiver Conserv 17, 21152137.CrossRefGoogle Scholar
Mitchell, E.A.D. & Gilbert, D. (2010). Present status of testate amoeba research, knowledge gaps and research priorities. Meeting Report: 5th International Symposium on Testate Amoebae (ISTA-5), Montbéliard, France, September 14–17, 2009. Protist 161, 337341.CrossRefGoogle ScholarPubMed
Mitchell, E.A.D., Gilbert, D., Buttler, A., Amblard, C., Grosvernier, P. & Gobat, J.M. (2003). Structure of microbial communities in Sphagnum peatlands and effect of atmospheric carbon dioxide enrichment. Microb Ecol 46, 187199.CrossRefGoogle ScholarPubMed
Mitchell, E.A.D., Payne, R.J. & Lamentowicz, M. (2008b). Potential implications of differential preservation of testate amoeba shells for paleoenvironmental reconstruction in peatlands. J Paleolimn 40, 603618.CrossRefGoogle Scholar
Murphy, D.B. (2001). Fundamentals of Light Microscopy and Electronic Imaging. New-York: Wiley-Liss.Google Scholar
Nguyen-Viet, H., Bernard, N., Mitchell, E.A.D., Badot, P.M. & Gilbert, D. (2008). Effect of lead pollution on testate amoebae communities living in Sphagnum fallax: An experimental study. Ecotoxicol Environ Safe 69, 130138.CrossRefGoogle ScholarPubMed
Ogden, C.G. & Hedley, R.H. (1980). An Atlas of Freshwater Testate Amoebae. New-York: Oxford University Press.CrossRefGoogle Scholar
Patterson, R.T., Barker, T. & Burbidge, S.M. (1996). Arcellaceans (thecamoebians) as proxies of arsenic and mercury contamination in northeastern Ontario lakes. J Foraminiferal Res 26, 172183.CrossRefGoogle Scholar
Patterson, R.T., Dalby, A., Kumar, A., Henderson, L.A. & Boudreau, R.E.A. (2002). Arcellaceans (thecamoebians) as indicators of land-use change: Settlement history of the Swan Lake area, Ontario as a case study. J Paleolimn 28, 297316.CrossRefGoogle Scholar
Pawley, J.B. (2006). Handbook of Biological Confocal Microscopy. New York: Springer.CrossRefGoogle Scholar
Raffray, M. & Cohen, G.M. (1997). Apoptosis and necrosis in toxicology: A continuum or district modes of cell death? Pharmacol Ther 75, 153177.CrossRefGoogle ScholarPubMed
Schönborn, W. (1983). Relationships between production, mortality and abundance in Testacean (Protozoa) communities in soil. Pedobiologia 25, 403412.Google Scholar
Schönborn, W. (1992). The role of protozoan communities in freshwater and soil ecosystems. Acta Protozool 31, 1118.Google Scholar
Schröter, D., Wolters, V. & De Ruiter, P.C. (2003). C and N mineralisation in the decomposer food webs of a European forest transect. Oikos 102, 294308.CrossRefGoogle Scholar
Todorov, M., Golemanski, V., Mitchell, E.A.D. & Heger, T.J. (2009). Morphology, biometry, and taxonomy of freshwater and marine interstitial Cyphoderia (Cercozoa: Euglyphida). J Eukaryotic Microbiol 56, 279289.CrossRefGoogle ScholarPubMed
Vohník, M., Burdíková, Z., Albrechtová, J. & Vosátka, M. (2009). Testate amoebae (Arcellinida and Euglyphida) vs. ericoid mycorrhizal and DSE fungi: A possible novel interaction in the mycorrhizosphere of Ericaceous plants? Microb Ecol 57, 203214.CrossRefGoogle ScholarPubMed
Walton, W.R. (1952). Techniques for recognition of living foraminifera. Contributions from the Cushman Foundation for Foraminiferal Research 3, 5660.Google Scholar
Wanner, M. (1999). A review on the variability of testate amoebae: Methodological approaches, environmental influences and taxonomical implications. Acta Protozool 38, 1529.Google Scholar
Weibel, E.R. (1979). Stereological Methods, Vol. 1: Practical Methods for Biological Morphometry. London: Academic Press.Google Scholar
Wilkinson, D.M. (2008). Testate amoebae and nutrient cycling: Peering into the black box of soil ecology. Trends Ecol Evol 23, 596599.CrossRefGoogle ScholarPubMed