Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T01:07:11.732Z Has data issue: false hasContentIssue false

SESAM: Exploring the Frontiers of Electron Microscopy

Published online by Cambridge University Press:  11 October 2006

Christoph T. Koch
Affiliation:
Max Planck Institut für Metallforschung, Heisenbergstr. 3, D-70569 Stuttgart, Germany
Wilfried Sigle
Affiliation:
Max Planck Institut für Metallforschung, Heisenbergstr. 3, D-70569 Stuttgart, Germany
Rainer Höschen
Affiliation:
Max Planck Institut für Metallforschung, Heisenbergstr. 3, D-70569 Stuttgart, Germany
Manfred Rühle
Affiliation:
Max Planck Institut für Metallforschung, Heisenbergstr. 3, D-70569 Stuttgart, Germany
Erik Essers
Affiliation:
Carl Zeiss SMT-NTS Division, Carl-Zeiss-Str. 56, 73447 Oberkochen, Germany
Gerd Benner
Affiliation:
Carl Zeiss SMT-NTS Division, Carl-Zeiss-Str. 56, 73447 Oberkochen, Germany
Marko Matijevic
Affiliation:
Carl Zeiss SMT-NTS Division, Carl-Zeiss-Str. 56, 73447 Oberkochen, Germany
Get access

Abstract

We report on the sub-electron-volt-sub-angstrom microscope (SESAM), a high-resolution 200-kV FEG-TEM equipped with a monochromator and an in-column MANDOLINE filter. We report on recent results obtained with this instrument, demonstrating its performance (e.g., 87-meV energy resolution at 10-s exposure time, or a transmissivity of the energy filter of T1 eV = 11,000 nm2). New opportunities to do unique experiments that may advance the frontiers of microscopy in areas such as energy-filtered TEM, spectroscopy, energy-filtered electron diffraction and spectroscopic profiling are also discussed.

Type
Research Article
Copyright
© 2006 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Benner, G., Matijevic, M., Stegmann, H., Schlossmacher, P., Haider, M., Uhlemann, S., & Schwan, E. (2006). In Proceedings of the 16th International Microscopy Congress (IMC-16), Iijima, S. (Ed.), (CD-ROM p. I20-03). Tokyo, Japan: Japanese Society of Electron Microscopy.
Benner, G. & Probst, W. (1994). Köhler illumination in the TEM-fundamentals and advantages. J Microsc 174, 133142.Google Scholar
Bockelmann, U. & Bastard, G. (1990). Phonon-scattering and energy relaxation in 2-dimensional, one-dimensional, and zero-dimensional electron gases. Phys Rev B 42, 89478951.Google Scholar
Cockayne, D.J.H. & McKenzie, D.R. (1988). Electron diffraction analysis of polycrystalline and amorphous thin films. Acta Crystallogr A 44, 870878.Google Scholar
Cockayne, D., McKenzie, D., & Muller, D. (1991). Electron diffraction of amorphous thin films using peels. Microsc Microanal Microstruct 2, 359366.Google Scholar
Essers, E., Benner, G., Orchowski, A., Kappel, R., & Trunz, M. (2002). New approach for ultra-stable TEM-column support frame. Proceedings of the 15th International Congress on Electron Microscopy, vol. 3 Cross, R. (Ed.), (CD-ROM pp. 355356). Onderstepoort, South Africa: Microscopy Society of Southern Africa.
Essers, E., Höschen, R., Matijevic, M., Benner, G., & Koch, C. (2006). In Proceedings of the 16th International Microscopy Congress (IMC-16), Iijima, S. (Ed.), (CD-ROM p. I9-03). Tokyo, Japan: Japanese Society of Electron Microscopy.
Fienup, J.R. (1982). Phase retrieval algorithms—A comparison. Appl Optics 21, 27582769.Google Scholar
Gloter, A., Douriri, A., Tence, M., & Colliex, C. (2002). Improving energy resolution of EELS spectra: An alternative to the monochromator solution. Ultramicroscopy 96, 385400.Google Scholar
Höschen, R., Sigle, W., & Phillipp, F. (1996). A drift compensating system for transmission electron microscopes. In Proceedings of the 11th European Congress on Electron Microscopy (EUREM), Belfield, U.C. (Ed.), (CD-ROM pp. 373374). Dublin, Ireland: EUREM.
Ibach, H. (1971). Optical surface phonons in zinc oxide detected by slow-electron spectroscopy. Phys Rev Lett 24, 14161418.Google Scholar
Ibach, H. & Mills, D.L. (1982). Electron Energy Loss Spectroscopy and Surface Vibrations. San Francisco: Academic.
Kahl, F. & Rose, H. (1996). Design of an electron monochromator with small Boersch effect. In Proceedings of the 11th European Congress on Electron Microscopy (EUREM), Belfield, U.C. (Ed.), (CD-ROM pp. 478479). Dublin, Ireland: EUREM.
Kesmodel, L. (1998). Application of high-resolution electron energy loss spectroscopy to technical surfaces. Langmuir 14, 13551360.Google Scholar
Koch, C.T. (2005). Imaging grain boundary segregation by electron diffractive imaging. Zeitschr f Metallkunde 96, 443447.Google Scholar
Kothleitner, G. & Hofer, F. (2003). EELS performance on a new high energy resolution imaging filter. Micron 34, 211.Google Scholar
Lucy, L.B. (1974). An iterative technique for the rectification of observed distributions. Astrophys J 79, 745755.Google Scholar
Marchesini, S., He, H., Chapman, H., Hauriege, S., Noy, A., Howells, M., Weierstall, U., & Spence, J. (2003). X-ray image reconstruction from a diffraction pattern alone. Phys Rev B 68 (140101), pp. 14.Google Scholar
McBride, W.E. & Cockayne, D.J.H. (2003). The structure of nanovolumes of amorphous materials. J Non-Crystall Solids 328, 233238.Google Scholar
Midgley, P. (1999). A simple new method to obtain high angular resolution ω-q patterns. Ultramicroscopy 76, 9196.Google Scholar
Morniroli, J.P. (2002). Large-Angle Convergent-Beam Electron Diffraction (LACBED): Applications to crystal defects. Paris: French Society of Microscopies.
Muller, D., Edwards, B., Kirkland, E., & Silcox, J. (2001). Simulation of thermal diffuse scattering including a detailed phonon dispersion curve. Ultramicroscopy 86, 371380.Google Scholar
Oszlanyi, G. & Suto, A. (2004). Ab initio structure solution by charge flipping. Acta Crystallogr A 60, 134.Google Scholar
Quandt, E., Barre, S.L., & Niedrig, H. (1990). Direct parallel detection of energy-resolved large-angle convergent-beam patterns. Ulramicroscopy 33, 1521.Google Scholar
Reimer, L. (1992). Energy-filtering transmission electron microscopy in materials science. Microsc Microanal Microstruct 3, 141.Google Scholar
Richardson, W.H. (1972). Bayesian-based iterative method of image restoration. J Opt Soc Am 62, 5559.Google Scholar
Rose, H. (1999). Prospects for realizing a sub-Ångstrom sub-eV resolution EFTEM. Ultramicroscopy 78, 1325.Google Scholar
Rossouw, C., Forwood, C., Gibson, M., & Miller, P. (1996). Statistical ALCHEMI: General formulation and method with application to Ti-Al ternary alloys. Phil Mag A 74, 5776.Google Scholar
Ruf, T. (2003). Inelastic X-ray spectroscopy: New possibilities for raman spectroscopy. Appl Phys A 76, 2126.Google Scholar
Sigle, W., Krämer, S., Varshney, V., Zern, A., Eigenthaler, U., & Rühle, M. (2003). Plasmon energy mapping in energy-filtering transmission electron microscopy. Ultramicroscopy 96, 565571.Google Scholar
Sigle, W., Zern, A., Hahn, K., Eigenthaler, U., & Rühle, M. (2001). J Electron Microsc 50, 509515.
Spence, J.C.H. & Koch, C.T. (2001). Atomic string holography. Phys Rev Lett 86, 55105513.Google Scholar
Spence, J.C.H. & Tafto, J. (1983). ALCHEMI—A new technique for locating atoms in small crystals. J Microsc 130, 147154.Google Scholar
Suzuki, K., Terauchi, M., Uemichi, Y., & Kijima, K. (2005). High energy-resolution electron energy-loss spectroscopy study of electronic structures of barium titanate nanocrystals. Jpn J Appl Phys 44, 75937597.Google Scholar
Tanaka, M., Saito, R., & Harada, Y. (1980). Large-angle convergent beam electron diffraction. J Electron Microsc 29, 408412.Google Scholar
Uhlemann, S. & Rose, H. (1994). The MANDOLINE filter—A new high-performance imaging filter for sub-eV EFTEM. Optik 96, 163.Google Scholar
Uhlemann, S. & Rose, H. (1996). Acceptance of imaging energy filters. Ultramicroscopy 63, 161167.Google Scholar
Urayama, J., Norris, T.B., Singh, J., & Bhattacharya, P. (2001). Observation of phonon bottleneck in quantum dot electronic relaxation. Phys Rev Lett 86, 49304933.Google Scholar
Vincent, R. & Silcox, J. (1973). Dispersion of radiative surface plasmons in aluminum films by electron scattering. Phys Rev Lett 31, 14871490.Google Scholar
Walther, T. & Mader, W. (1999). Application of spatially resolved electron energy-loss spectroscopy to the quantitative analysis of semiconducting layer structures. Inst Conf Ser 164, 121128.Google Scholar
Weickenmeier, A., Quandt, E., Kohl, H., Rose, H., & Niedrig, H. (1993). Computation and measurement of characteristic energy-loss large-angle convergent-beam patterns of molybdenum selenide. Ultramicroscopy 49, 210219.Google Scholar
Wu, J.S., Weierstall, U., Spence, J.C.H., & Koch, C.T. (2004). Iterative phase retrieval without support. Optics Lett 29, 27372739.Google Scholar
Zuo, J.M., McCartney, M.R., & Spence, J.C.H. (1996). Performance of imaging plates for electron recording. Ultramicroscopy 66, 3547.Google Scholar
Zuo, J.M., Vartanyants, I., Gao, M., Zhang, R., & Nagahara, L.A. (2003). Atomic resolution imaging of a carbon nanotube from diffraction intensities. Science 300, 14191421.Google Scholar