Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T22:35:22.541Z Has data issue: false hasContentIssue false

Reflections on the Projection of Ions in Atom Probe Tomography

Published online by Cambridge University Press:  02 February 2017

Frédéric De Geuser
Affiliation:
Université Grenoble Alpes, SIMAP, F-38000 Grenoble, France CNRS, SIMAP, F-38000 Grenoble, France
Baptiste Gault*
Affiliation:
Max-Planck Institut für Eisenforschung, Max-Planck-Straße 1, D-40237 Dsseldorf, Germany
*
* Corresponding author. b.gault@mpie.de
Get access

Abstract

There are two main projections used to transform, and reconstruct, field ion micrographs or atom probe tomography data into atomic coordinates at the specimen surface and, subsequently, in three dimensions. In this article, we present a perspective on the strength of the azimuthal equidistant projection in comparison with the more widely used and well-established point projection (or pseudo-stereographic projection), which underpins data reconstruction in most software packages currently in use across the community. After an overview of the reconstruction methodology, we demonstrate that the azimuthal equidistant is more robust with regards to errors on the parameters used to perform the reconstruction and is therefore more likely to yield more accurate tomographic reconstructions.

Type
Reconstruction
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bas, P., Bostel, A., Deconihout, B. & Blavette, D. (1995). A general protocol for the reconstruction of 3D atom probe data. Appl Surf Sci 87/88, 298304.CrossRefGoogle Scholar
Blavette, D., Sarrau, J.M., Bostel, A. & Gallot, J. (1982). Direction and depth of atom probe analysis. Rev De Phys Appl 17(7), 435440.CrossRefGoogle Scholar
Brandon, D.G. (1964). Accurate determination of crystal orientation from field ion micrographs. J Sci Instrum 41(6), 373375.Google Scholar
Britton, T.B., Jiang, J., Guo, Y., Vilalta-Clemente, A., Wallis, D., Hansen, L.N., Winkelmann, A. & Wilkinson, A.J. (2016). Tutorial: Crystal orientations and EBSD or which way is up? Mater Charact 117, 113126.Google Scholar
Cerezo, A., Warren, P. & Smith, G. (1999). Some aspects of image projection in the field-ion microscope. Ultramicroscopy 79(1–4), 251257.Google Scholar
Gault, B., Haley, D., de Geuser, F., Moody, M.P., Marquis, E.A., Larson, D.J. & Geiser, B.P. (2011). Advances in the reconstruction of atom probe tomography data. Ultramicroscopy 111(6), 448457.CrossRefGoogle ScholarPubMed
Gault, B., Moody, M.P., De Geuser, F., Tsafnat, G., La Fontaine, A., Stephenson, L.T., Haley, D. & Ringer, S.P. (2009). Advances in the calibration of atom probe tomographic reconstruction. J Appl Phys 105, 034913.CrossRefGoogle Scholar
Geiser, B.P., Larson, D.J., Oltman, E., Gerstl, S.S., Reinhard, D.A., Kelly, T.F. & Prosa, T.J. (2009). Wide-field-of-view atom probe reconstruction. Microsc Microanal 15(Suppl 2), 292293.Google Scholar
Gipson, G.S. (1980). An improved empirical-formula for the electric-field near the surface of field emitters. J Appl Phys 51(7), 38843889.Google Scholar
Hyde, J.M., Cerezo, A., Setna, R.P., Warren, P.J. & Smith, G.D.W. (1994). Lateral and depth scale calibration of the position sensitive atom probe. Appl Surf Sci 76/77, 382391.CrossRefGoogle Scholar
Keller, R.R. & Geiss, R.H. (2012). Transmission EBSD from 10 nm domains in a scanning electron microscope. J Microsc 245, 245251.Google Scholar
Larson, D., Gault, B., Geiser, B., De Geuser, F. & Vurpillot, F. (2013). Atom probe tomography spatial reconstruction: Status and directions. Curr Opin Solid State Mat Sci 17(5), 236247.Google Scholar
Loi, S.T., Gault, B., Ringer, S.P., Larson, D.J. & Geiser, B.P. (2013). Electrostatic simulations of a local electrode atom probe: The dependence of tomographic reconstruction parameters on specimen and microscope geometry. Ultramicroscopy 132, 107113.CrossRefGoogle ScholarPubMed
Miller, M.K., & Forbes, R.G. (2014). Atom-Probe Tomography. Boston, MA: Springer.CrossRefGoogle Scholar
Newman, R.W., Sanwald, R.C. & Hren, J.J. (1967). A method for indexing field ion micrographs. J Sci Instrum 44, 828830.CrossRefGoogle Scholar
Oberdorfer, C., Eich, S.M. & Schmitz, G., 5 (2013). A full-scale simulation approach for atom probe tomography. Ultramicroscopy 128, 5567.Google Scholar
Rauch, E. & Véron, M. (2014). Automated crystal orientation and phase mapping in TEM. Mater Charact 98, 19.CrossRefGoogle Scholar
Snyder, J. (2007). Flattening the Earth: Two Thousand Years of Map Projections. Chicago, IL, USA: University of Chicago Press.Google Scholar
Trimby, P.W. (2012). Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope. Ultramicroscopy 120, 1624.CrossRefGoogle ScholarPubMed
Vurpillot, F., Bostel, A., Cadel, E. & Blavette, D. (2000). The spatial resolution of 3D atom probe in the investigation of single-phase materials. Ultramicroscopy 84(3–4), 213224.Google Scholar
Vurpillot, F., Gruber, M., Da Costa, G., Martin, I., Renaud, L. & Bostel, A. (2011). Pragmatic reconstruction methods in atom probe tomography. Ultramicroscopy 111(8), 12861294.Google Scholar
Wilkes, T.J., Smith, G.D.W. & Smith, D.A. (1974). On the quantitative analysis of field ion micrographs. Metallography 7, 403430.CrossRefGoogle Scholar