Hostname: page-component-84b7d79bbc-dwq4g Total loading time: 0 Render date: 2024-07-28T19:58:10.781Z Has data issue: false hasContentIssue false

Quantification of low-Z elements by energy-filtered scanning transmission electron microscopy

Published online by Cambridge University Press:  30 July 2021

Saleh Firoozabadi
Affiliation:
Materials Science Centre and Department of Physics, Philipps University Marburg, Hans-Meerwein-Straße 6, Marburg, 35032, Germany, Marburg, Hessen, Germany
Andreas Beyer
Affiliation:
Materials Science Centre and Department of Physics, Philipps University Marburg, Hans-Meerwein-Straße 6, Marburg, 35032, Germany, Germany
Pirmin Kükelhan
Affiliation:
Materials Science Centre and Department of Physics, Philipps University Marburg, Hans-Meerwein-Straße 6, Marburg, 35032, Germany, Germany
Damien Heimes
Affiliation:
Materials Science Centre and Department of Physics, Philipps University Marburg, Hans-Meerwein-Straße 6, Marburg, 35032, Germany, Germany
Jannik Lehr
Affiliation:
Materials Science Centre and Department of Physics, Philipps University Marburg, Hans-Meerwein-Straße 6, Marburg, 35032, Germany, United States
Kerstin Volz
Affiliation:
Materials Science Centre and Department of Physics, Philipps University Marburg, Hans-Meerwein-Straße 6, Marburg, 35032, Germany, Germany

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Diffraction Imaging Across Disciplines
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

References

LeBeau, J. M., Findlay, S. D., Allen, L. J., & Stemmer, S. (2008). Quantitative atomic resolution scanning transmission electron microscopy. Physical Review Letters, 100(20), 206101.CrossRefGoogle ScholarPubMed
Müller-Caspary, K., Oppermann, O., Grieb, T., Krause, F. F., Rosenauer, A., Schowalter, M.,… & Potapov, P. (2016). Materials characterisation by angle-resolved scanning transmission electron microscopy. Scientific reports, 6(1), 1-9.CrossRefGoogle ScholarPubMed
Beyer, A., Krause, F. F., Robert, H. L., Firoozabadi, S., Grieb, T., Kükelhan, P.,… & Volz, K. (2020). Influence of plasmon excitations on atomic-resolution quantitative 4D scanning transmission electron microscopy. Scientific Reports, 10(1), 1-15.Google ScholarPubMed
Grieb, T., Krause, F. F., Müller-Caspary, K., Firoozabadi, S., Mahr, C., Schowalter, M.,… & Rosenauer, A. (2021). Angle-resolved STEM using an iris aperture: Scattering contributions and sources of error for the quantitative analysis in Si. Ultramicroscopy, 221, 113175.CrossRefGoogle ScholarPubMed
Oelerich, J. O., Duschek, L., Belz, J., Beyer, A., Baranovskii, S. D., & Volz, K. (2017). STEMsalabim: a high-performance computing cluster friendly code for scanning transmission electron microscopy image simulations of thin specimens. Ultramicroscopy, 177, 91-96.Google ScholarPubMed
Kirkland, E. J. (1998). Advanced Computing in Electron Microscopy Plenum Press. New York.CrossRefGoogle Scholar
Beyer, A., Duschek, L., Belz, J., Oelerich, J. O., Jandieri, K., & Volz, K. (2017). Influence of surface relaxation of strained layers on atomic resolution ADF imaging. Ultramicroscopy, 181, 8-16.Google ScholarPubMed