Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-19T02:22:07.481Z Has data issue: false hasContentIssue false

Nanoprobe Fourier-Transform Photoabsorption Spectroscopy Using a Supercontinuum Light Source

Published online by Cambridge University Press:  03 May 2012

Kiyoshiro Ishibe
Affiliation:
Department of Applied Physics, Graduate School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-5686, Japan
Satoru Nakada
Affiliation:
Department of Applied Physics, Graduate School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-5686, Japan
Yutaka Mera
Affiliation:
Department of Applied Physics, Graduate School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-5686, Japan
Koji Maeda*
Affiliation:
Department of Applied Physics, Graduate School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-5686, Japan
*
Corresponding author. E-mail: maeda@exp.t.u-tokyo.ac.jp
Get access

Abstract

A scheme of photoabsorption spectroscopy based on scanning tunneling microscopy (STM) has been developed by using a supercontinuum light as the wideband light source of a Fourier transform interferometer for spectroscopic measurements. The performance was demonstrated for a sample of GaAs. The proof-of-concept test showed that the use of the supercontinuum light instead of halogen lamps greatly enhances the signal-to-noise ratio due to the high brilliance of the supercontinuum light emitted from a small core of the photonic crystal fiber that enables tight focusing of the spectroscopy light onto the sample beneath the STM tip.

Type
Techniques Development
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, M.S. (2000). Locally enhanced Raman spectroscopy with an atomic force microscope. Appl Phys Lett 76(21), 31303132.Google Scholar
Anderson, N., Hartschuh, A., Cronin, S. & Novotny, L. (2005). Nanoscale vibrational analysis of single-walled carbon nanotubes. J Am Chem Soc 127(8), 25332537.CrossRefGoogle ScholarPubMed
Azoulay, J., Deâbarre, A., Richard, A. & Tcheânio, P. (1999). Field enhancement and apertureless near-field optical spectroscopy of single molecules. J Microsc 194(2-3), 486490.Google Scholar
Berweger, S., Neacsu, C.C., Mao, Y., Zhou, H., Wong, S.S. & Raschke, M.B. (2009). Optical nanocrystallography with tip-enhanced phonon Raman spectroscopy. Nat Nanotechnol 4, 496499.Google Scholar
Bielefeldt, H., Hörsch, I., Krausch, G., Lux-Steiner, M., Mlynek, J. & Marti, O. (1994). Reflection-scanning near-field optical microscopy of opaque samples. Appl Phys A 59(2), 103108.CrossRefGoogle Scholar
Bubendorff, J.L., Pastreâ, D. & Troyon, M. (2000). Cathodoluminescence imaging and spectroscopy by near-field detection. J Microsc 199(3), 191196.CrossRefGoogle ScholarPubMed
Carmichael, E.S., Ballard, J.B., Lyding, J.W. & Gruebele, M. (2007). Frequency-modulated, single-molecule absorption detected by scanning tunneling microscopy. J Phys Chem C 111(8), 33143321.CrossRefGoogle Scholar
Dazzi, A., Prazeres, R., Glotin, F. & Ortega, J.M. (2005). Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. Opt Lett 30 (18), 23882390.Google Scholar
Dudley, J.M., Genty, G. & Coen, S. (2006). Supercontinuum generation in photonic crystal fiber. Rev Mod Phys 78(4), 11351184.Google Scholar
Dumas, Ph., Gu, M., Syrykh, C., Hallimaoui, A., Salvan, F., Gimzewski, J.K. & Schlittler, R.R. (1994). Photon spectroscopy, mapping, and topography of 85% porous silicon. J Vac Sci Technol B 12(3), 20642066.Google Scholar
Felts, J.R., Kjoller, K., Prater, C.B. & King, W.P. (2010). Enhanced nanometer-scale infrared spectroscopy with a contact mode microcantilever having an internal resonator paddle. Proc IEEE 23rd Int. Conf. Micro Electro Mechanical Systems, Hong Kong, China, January 24–28, 2010, pp. 136–139.CrossRefGoogle Scholar
Fujihira, M., Monobe, H., Muramatsu, H. & Ataka, T. (1994). Scanning near-field microscopy and nanoscopic fluorescence spectroscopy in combination with a non-contact scanning force microscope. Chem Lett 23, 657660.CrossRefGoogle Scholar
Grafström, S. (2002). Photoassisted scanning tunneling microscopy. J Appl Phys 91(4), 17171753.CrossRefGoogle Scholar
Hammiche, A., Pollock, H.M., Reading, M., Claybourn, M., Turner, P.H. & Jewkes, K. (1999). Photothermal FT-IR spectroscopy: A step towards FT-IR microscopy at a resolution better than the diffraction limit. Appl Spectrosc 53(7), 810815.Google Scholar
Hayazawa, N., Inouye, Y., Sekkat, Z. & Kawata, S. (2000). Metallized tip amplification of near-field Raman scattering. Opt Comm 183, 333336.CrossRefGoogle Scholar
Hida, A., Mera, Y. & Maeda, K. (2001a). Electric field modulation spectroscopy by scanning tunneling microscopy with a nanometer-scale resolution. Appl Phys Lett 78(20), 30293031.Google Scholar
Hida, A., Mera, Y. & Maeda, K. (2001b). Nanometer-scale measurements of photoabsorption spectra of individual defects in semiconductors. Appl Phys Lett 78(21), 31903192.Google Scholar
Huber, A.J., Ziegler, A., Köck, T. & Hillenbrand, R. (2009). Infrared nanoscopy of strained semiconductors. Nat Nanotechnol 4, 153157.Google Scholar
Jeong, M.S., Kim, J.Y., Kim, Y.-W., White, J.O., Suh, E.-K., Hong, C.-H. & Lee, H.J. (2001). Spatially resolved photoluminescence in InGaN/GaN quantum wells by near-field scanning optical microscopy. Appl Phys Lett 79(7), 976978.Google Scholar
Klapetek, P., Bujdák, J. & Buršik, J. (2010). Near-field scanning optical microscopy local luminescence studies of rhodamine dye. Cent Eur J Phys 8(3), 312317.Google Scholar
Naruse, N., Mera, Y., Fukuzawa, Y., Nakamura, Y., Ichikawa, M. & Maeda, K. (2007a). Fourier transform photoabsorption spectroscopy based on scanning tunneling microscopy. J Appl Phys 102(11), 114301-1–6.Google Scholar
Naruse, N., Mera, Y. & Maeda, K. (2007b). Response analysis for identifying the origin of photo-modulated current contrasts in scanning tunneling microscopic imaging semiconductor surfaces. Ultramicroscopy 107(8), 568574.CrossRefGoogle ScholarPubMed
Naruse, N., Mera, Y., Nakamura, Y., Ichikawa, M. & Maeda, K. (2009). Fourier-transform photoabsorption spectroscopy of quantum-confinement effects in individual GeSn nanodots. Appl Phys Lett 94(9), 093104-1–3.Google Scholar
Okuda, T., Eguchi, T., Akiyama, K., Harasawa, A., Kinoshita, T., Hasegawa, Y., Kawamori, M., Haruyama, Y. & Matsui, S. (2009). Nanoscale chemical imaging by scanning tunneling microscopy assisted by synchrotron radiation. Phys Rev Lett 102(10), 105503-1–4.Google Scholar
Pettinger, B., Ren, B., Picardi, G., Schuster, R. & Ertl, G. (2004). Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. Phys Rev Lett 92(9), 096101-1–4.Google Scholar
Saito, A., Takagi, Y., Takahashi, K., Hosokawa, H., Hanai, K., Tanaka, T., Akai-kasaya, M., Tanaka, Y., Shin, S., Ishikawa, T., Kuwahara, Y. & Aono, M. (2008). Nanoscale elemental identification by synchrotron-radiation-based scanning tunneling microscopy. Surf Interf Anal 40(6-7), 10331036.CrossRefGoogle Scholar
Takeuchi, O., Aoyama, M., Oshima, R., Okada, Y., Oigawa, H., Sano, N., Shigekawa, H., Morita, R. & Yamashita, M. (2004). Probing subpicosecond dynamics using pulsed laser combined scanning tunneling microscopy. Appl Phys Lett 85(15), 32683270.CrossRefGoogle Scholar
Toda, Y., Shinomori, S., Suzuki, K. & Arakawa, Y. (1998). Near-field optical spectroscopy of self-assembled quantum dots: NSOM apparatus for measuring the features of single dots. Solid-State Electron 42, 10831086.Google Scholar
Ushioda, S., Uehara, Y. & Kuwahara, M. (1992). STM light emission spectroscopy of Au film. Appl Surf Sci 60/61, 448453.Google Scholar