Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T07:20:07.878Z Has data issue: false hasContentIssue false

Modeling of Infrared–Visible Sum Frequency Generation Microscopy Images of a Giant Liposome

Published online by Cambridge University Press:  27 October 2016

Victor Volkov*
Affiliation:
School of Science and Technology, Interdisciplinary Biomedical Research Center, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
Carole C. Perry
Affiliation:
School of Science and Technology, Interdisciplinary Biomedical Research Center, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
*
*Corresponding author. volkovskr@gmail.com
Get access

Abstract

The article explores the theory of infrared–visible sum frequency generation microscopy of phospholipid envelopes with dimensions larger than the wavelength of the nonlinear emission. The main part of the study concerns derivation and accounting for the contributions of effective nonlinear responses specific to sites on the surfaces of a bilayer envelope and their dependence on polarization condition and experimental geometry. The nonlinear responses of sites are mapped onto the image plane according to their emission directions and the numerical aperture of a sampling microscope objective. According to the simulation results, we discuss possible approaches to characterize the shape of the envelope, to extract molecular hyperpolarizabilities, and to anticipate possible heterogeneity in envelope composition and anisotropy of the environment proximal to the envelope. The modeling approach offers a promising analytic facility to assist connecting microscopy observations in engineered liposomes, cellular envelopes, and subcellular organelles of relatively large dimensions to molecular properties, and hence to chemistry and structure down to available spatial resolution.

Type
Biological Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angelova, M. & Dimitrov, D. (1986). Liposome electroformation. Faraday Discuss Chem Soc 81, 303311.Google Scholar
Becke, D. (1988). Density-functional exchange-energy approximation with correct asymptotic behaviour. Phys Rev A 38, 30983100.CrossRefGoogle Scholar
Callender, R.H. & Dyer, R.B. (2002). Probing protein dynamics using temperature jump relaxation spectroscopy. Curr Opin Struct Biol 12, 628633.Google Scholar
Chen, X., Hua, W., Huang, Z. & Allen, H. (2010). Interfacial water structure associated with phospholipid membranes studied by phase-sensitive vibrational sum frequency generation spectroscopy. J Am Chem Soc 132, 1133611342.Google Scholar
Cimatu, K. & Baldelli, S. (2006). Sum frequency generation microscopy of microcontact-printed mixed self-assembled monolayers. J Phys Chem B 110, 18071813.CrossRefGoogle ScholarPubMed
Collazo, N., Shin, S. & Rice, S.A. (1992). Molecular‐dynamics studies of the structure and properties of monolayers of perfluorinated amphiphiles. J Chem Phys 96, 47354742.Google Scholar
Dailey, C.A., Burke, B.J. & Simpson, G.J. (2004). The general failure of Kleinman symmetry in practical nonlinear optical applications. Chem Phys Lett 390, 813.Google Scholar
Dick, B., Gierulski, A., Marowsky, G. & Reider, G.A. (1985). Determination of the nonlinear optical susceptibility χ(2) of surface layers by sum and difference frequency generation in reflection and transmission. Appl Phys B 38, 107116.Google Scholar
Djondjorova, P.A., Vassileva, V.M. & Mladenov, I.M. (2004). Analytic description and explicit parametrization of the equilibrium shapes of elastic rings and tubes under uniform hydrostatic pressure. Int J Mech Sci 53, 355364.Google Scholar
Felderhof, B.U. & Marowsky, G. (1987). Electromagnetic radiation from a polarization sheet located at an interface between two media. Appl Phys B 44, 1117.Google Scholar
Flörsheimer, M., Brillert, C. & Fuchs, H. (1999). Chemical imaging of interfaces by sum frequency microscopy. Langmuir 15, 54375439.Google Scholar
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A. Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J. & Fox, D.J. (2010). GAUSSIAN 09, Revision B.01. Wallingford, CT: Gaussian Inc.Google Scholar
Gros-Daillon, E., Maingault, L., Andre, L., Reboud, V., Verger, L., Charbon, E., Bruschini, C., Veerappan, C., Stoppa, D., Massari, N., Perenzoni, M., Braga, L.H.C., Gasparini, L., Henderson, R.K., Walker, R., East, S., Grant, L., Jatekos, B., Lorincz, E., Ujhelyi, F., Erdei, G., Major, P., Papp, Z. & Nemeth, G. (2013). First characterization of the SPADnet sensor: A digital silicon photomultiplier for PET applications. J Instrum 8, C12026.CrossRefGoogle Scholar
Gulliver, G. (1875). Observations on the sizes and shapes of the red corpuscles of the blood of the vertebrates with drawings of them to a uniform scale and extended and revised tables of measurements. Proc Zool Soc Lond 43, 474495.Google Scholar
Guyot-Sionnest, P., Hunt, H. & Shen, Y.R. (1987). Sum-frequency vibrational spectroscopy of a Langmuir film: Study of molecular orientation of a two-dimensional system. Phys Rev Lett 59, 15971600.CrossRefGoogle ScholarPubMed
Han, Y., Raghunathan, V., Feng, R., Maekawa, H., Chung, C., Feng, Y., Potma, E.O. & Ge, N. (2013). Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy. J Phys Chem B 117, 61496156.Google Scholar
Hecht, E. (2002). Optics. San Francisco, CA: Pearson Education Inc.Google Scholar
Hirose, C., Akamatsu, N. & Domen, K. (1992). Formulas for the analysis of the surface SFG spectrum and transformation coefficients of Cartesian SFG tensor components. Appl Spectrosc 46, 10511072.Google Scholar
Hoffmann, D.M.P., Kuhnke, K. & Kern, K. (2002). Sum-frequency generation microscope for opaque and reflecting samples. Rev Sci Instrum 73, 32213226.CrossRefGoogle Scholar
Jang, J., Jacob, J., Santos, G., Lee, T. & Baldelli, S. (2013). Molecular conformation as contrast mechanism in sum frequency generation microscopy. J Phys Chem C 117, 1519215202.CrossRefGoogle Scholar
Kleinman, D.A. (1962). Nonlinear dielectric polarization in optical media. Phys Rev 126, 19771979.Google Scholar
Lee, C., Yang, W. & Parr, R. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37, 785789.Google Scholar
Li, G., Dhinojwala, A. & Yeganeh, M.S. (2011). Interference effect from buried interfaces investigated by angular-dependent infrared−visible sum frequency generation technique. J Phys Chem C 115, 75547561.CrossRefGoogle Scholar
Moad, A.J. & Simpson, G.J. (2004). A unified treatment of selection rules and symmetry relations for sum-frequency and second harmonic spectroscopies. J Phys Chem B 108, 35483562.Google Scholar
Nakano, T., Kikugawa, G. & Ohara, T. (2010). A molecular dynamics study on heat conduction characteristics in DPPC lipid bilayer. J Chem Phys 133, 154705.Google Scholar
Phillips, C.M., Mizutani, Y. & Hochstrasser, R.M. (1995). Ultrafast thermally induced unfolding of RNase A. Proc Natl Acad Sci 92, 72927296.Google Scholar
Potdar, D. & Sammalkorpi, M. (2015). Asymmetric heat transfer from nanoparticles in lipid bilayers. Chem Phys 463, 2229.Google Scholar
Schleeger, M., Nagata, Y. & Bonn, M. (2014). Quantifying surfactant alkyl chain orientation and conformational order from sum frequency generation spectra of CH modes at the surfactant-water interface. J Phys Chem Lett 5, 37373741.Google Scholar
Sipe, J.E. (1981). The dipole antenna problem in surface physics: A new approach. Surf Sci 105, 489504.Google Scholar
Staneva, G., Angelova, M. & Koumanov, K. (2004). Phospholipase A2 promotes raft budding and fission from giant liposomes. Chem Phys Lipids 129, 5362.Google Scholar
Volkov, V. (2014). Tip-induced deformation of a phospholipid bilayer: Theoretical perspective of sum frequency generation imaging. J Chem Phys 141, 154201.Google Scholar
Volkov, V., Nuti, F., Takaoka, Y., Chelli, R., Papini, A.M. & Righini, R. (2006). Hydration and hydrogen bonding of carbonyls in dimyristoyl-phosphatidylcholine bilayer. J Am Chem Soc 128, 94669471.Google Scholar
Walker, A., Conboy, J.C. & Richmond, G.L. (1997). Molecular structure and ordering of phospholipids at a liquid-liquid interface. Langmuir 13, 30703073.CrossRefGoogle Scholar
Xiao, D., Fu, L., Liu, J., Batista, V. & Yan, E. (2012). Amyloid polypeptide aggregates to lipid/aqueous interfaces. J Mol Biol 421, 537547.Google Scholar
Zhu, X.D., Suhr, H. & Shen, Y.R. (1987). Surface vibrational spectroscopy by infrared-visible sum frequency generation. Phys Rev B 35, 30473050.CrossRefGoogle ScholarPubMed
Zhuang, X., Miranda, P.B., Kim, D. & Shen, Y.R. (1999). Mapping molecular orientation and conformation at interfaces by surface nonlinear optics. Phys Rev B 59, 1263212640.Google Scholar
Supplementary material: File

Volkov and Perry supplementary material

Volkov and Perry supplementary material 1

Download Volkov and Perry supplementary material(File)
File 421.4 KB