Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T10:44:51.953Z Has data issue: false hasContentIssue false

MBIR 3D Reconstruction Method Effectively Minimizes Missing Wedge Artifacts and Restores Missing Information in Cryo-electron Tomography

Published online by Cambridge University Press:  30 July 2020

Rui Yan
Affiliation:
Howard Hughes Medical Institute, Ashburn, Virginia, United States
Singanallur Venkatakrishnan
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
Jun Liu
Affiliation:
Yale University School of Medicine, West Haven, Connecticut, United States
Charles Bouman
Affiliation:
Purdue University, West Lafayette, Indiana, United States
Wen Jiang
Affiliation:
Purdue University, West Lafayette, Indiana, United States

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
The Promise of Cryo-Electron Tomography
Copyright
Copyright © Microscopy Society of America 2020

References

Bharat, T.A.M., Russo, C.J., Löwe, J., Passmore, L.A., Scheres, S.H.W., 2015. Advances in Single-Particle Electron Cryomicroscopy Structure Determination applied to Sub-tomogram Averaging. Structure 23, 17431753.10.1016/j.str.2015.06.026CrossRefGoogle ScholarPubMed
Cardone, G., Grünewald, K., Steven, A.C., 2005. A resolution criterion for electron tomography based on cross-validation. J. Struct. Biol. 151, 117129.10.1016/j.jsb.2005.04.006CrossRefGoogle ScholarPubMed
Deng, Y., Chen, Y., Zhang, Y., Wang, S., Zhang, F., Sun, F., 2016. ICON: 3D reconstruction with “missing-information” restoration in biological electron tomography. J. Struct. Biol. 195, 100112.10.1016/j.jsb.2016.04.004CrossRefGoogle ScholarPubMed
Gilbert, P., 1972. Iterative methods for the three-dimensional reconstruction of an object from projections. Journal of Theoretical Biology. https://doi.org/10.1016/0022-5193(72)90180-4CrossRefGoogle ScholarPubMed
Herman, G.T., 2009. Fundamentals of Computerized Tomography: Image Reconstruction from Projections. Springer Science & Business Media.Google Scholar
Himes, B.A., Zhang, P., 2018. emClarity: software for high-resolution cryo-electron tomography and subtomogram averaging. Nat. Methods 15, 955961.10.1038/s41592-018-0167-zCrossRefGoogle ScholarPubMed
Lucić, V., Förster, F., Baumeister, W., 2005. Structural studies by electron tomography: from cells to molecules. Annu. Rev. Biochem. 74, 833865.10.1146/annurev.biochem.73.011303.074112CrossRefGoogle ScholarPubMed
Radermacher, M., n.d. Weighted Back-projection Methods. Electron Tomography. https://doi.org/10.1007/978-0-387-69008-7_9CrossRefGoogle Scholar
Venkatakrishnan, S.V., Drummy, L.F., Jackson, M., De Graef, M., Simmons, J., Bouman, C.A., 2015. Model-Based Iterative Reconstruction for Bright-Field Electron Tomography. IEEE Transactions on Computational Imaging. https://doi.org/10.1109/tci.2014.2371751CrossRefGoogle Scholar
Yan, R., Venkatakrishnan, S.V., Liu, J., Bouman, C.A., Jiang, W., 2019. MBIR: A cryo-ET 3D reconstruction method that effectively minimizes missing wedge artifacts and restores missing information. J. Struct. Biol. 206, 183192.10.1016/j.jsb.2019.03.002CrossRefGoogle ScholarPubMed