Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T18:47:54.131Z Has data issue: false hasContentIssue false

Mapping Dynamical Mechanical Properties of Osteonal Bone by Scanning Acoustic Microscopy in Time-of-Flight Mode

Published online by Cambridge University Press:  11 April 2014

Stéphane Blouin*
Affiliation:
1st Medical Department, Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
Stephan Puchegger
Affiliation:
Faculty of Physics, University of Vienna, Dynamics of Condensed Systems, Strudlhofgasse 4, A-1090 Vienna, Austria
Andreas Roschger
Affiliation:
1st Medical Department, Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
Andrea Berzlanovich
Affiliation:
Department of Forensics, Medical University of Vienna, Sensengasse 2, A-1090 Vienna, Austria
Peter Fratzl
Affiliation:
Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
Klaus Klaushofer
Affiliation:
1st Medical Department, Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
Paul Roschger
Affiliation:
1st Medical Department, Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
*
*Corresponding author. stephane.blouin@osteologie.at
Get access

Abstract

An important determinant of mechanical properties of bone is Young’s modulus and its variation in individual osteons of cortical bone tissue. Its mechanical behavior also depends on deformation rate owing to its visco- or poroelastic properties. We developed a method to measure dynamical mechanical properties of bulk bone tissue at osteonal level based on scanning acoustic microscopy (SAM) using time-of-flight (TOF) measurements in combination with quantitative backscattered electron imaging (qBEI). SAM-TOF yields local sound velocities and qBEI corresponding material densities together providing elastic properties. Osteons (n=55) were measured in three human femoral diaphyseal ground bone sections (∼30 µm in thickness). In addition, subchondral bone and mineralized articular cartilage were investigated. The mean mineral contents, the mean sound velocities, and the mean elastic modulus of the osteons ranged from 20 to 26 wt%, from 3,819 to 5,260 m/s, and from 21 to 44 GPa, respectively. There was a strong positive correlation between material density and sound velocity (Pearson’s r=0.701; p<0.0001) of the osteons. Sound velocities between cartilage and bone was similar, though material density was higher in cartilage (+4.46%, p<0.0001). These results demonstrate the power of SAM-TOF to estimate dynamic mechanical properties of the bone materials at the osteonal level.

Type
Biological Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adharapurapu, R.R., Jiang, F. & Vecchio, K.S. (2006). Dynamic fracture of bovine bone. Mater Sci Eng C 26(8), 13251332.CrossRefGoogle Scholar
Al Nazer, R., Lanovaz, J., Kawalilak, C., Johnston, J.D. & Kontulainen, S. (2012). Direct in vivo strain measurements in human bone-a systematic literature review. J. Biomech. 45(1), 2740.Google Scholar
Ashman, R.B. & Rho, J.Y. (1988). Elastic modulus of trabecular bone material. J. Biomech. 21(3), 177181.CrossRefGoogle ScholarPubMed
Atalar, A., Quate, C.F. & Wickramasinghe, H.K. (1977). Phase imaging in reflection with the acoustic microscope. Appl Phys Lett 31(12), 791793.Google Scholar
Basser, P.J., Schneiderman, R., Bank, R.A., Wachtel, E. & Maroudas, A. (1998). Mechanical properties of the collagen network in human articular cartilage as measured by osmotic stress technique. Arch. Biochem. Biophys. 351(2), 207219.CrossRefGoogle ScholarPubMed
Bensamoun, S., Gherbezza, J.M., de Belleval, J.F. & Ho Ba Tho, M.C. (2004aTransmission scanning acoustic imaging of human cortical bone and relation with the microstructure. Clin. Biomech. (Bristol, Avon) 19(6), 639647.Google Scholar
Bensamoun, S., Ho Ba Tho, M.C., Luu, S., Gherbezza, J.M. & de Belleval, J.F. (2004bSpatial distribution of acoustic and elastic properties of human femoral cortical bone. J. Biomech. 37(4), 503510.Google Scholar
Bertoni, H.L. (1984). Ray-Optical Evaluation of V(z) in the Reflection Acoustic Microscope. IEEE Trans Sonics Ultrason 31(2), 105116.Google Scholar
Bloebaum, R.D., Skedros, J.G., Vajda, E.G., Bachus, K.N. & Constantz, B.R. (1997). Determining mineral content variations in bone using backscattered electron imaging. Bone 20(5), 485490.Google Scholar
Boyde, A. & Jones, S.J. (1983). Back-scattered electron imaging of skeletal tissues. Metab. Bone Dis. Relat. Res 5(3), 145150.Google Scholar
Briggs, A. (1992). Acoustic microscopy. Oxford: Oxford University Press.Google Scholar
Bumrerraj, S. & Katz, J.L. (2001). Scanning acoustic microscopy study of human cortical and trabecular bone. Ann. Biomed. Eng. 29(12), 10341042.Google Scholar
Chappard, D., Basle, M.F., Legrand, E. & Audran, M. (2011). New laboratory tools in the assessment of bone quality. Osteoporos. Int. 22(8), 22252240.CrossRefGoogle ScholarPubMed
Cowin, S.C. (1999). Bone poroelasticity. J. Biomech. 32(3), 217238.CrossRefGoogle ScholarPubMed
Crowninshield, R.D. & Pope, M.H. (1974). The response of compact bone in tension at various strain rates. Ann. Biomed. Eng. 2(2), 217225.Google Scholar
Currey, J.D. (1975). The effects of strain rate, reconstruction and mineral content on some mechanical properties of bovine bone. J. Biomech. 8(1), 8186.Google Scholar
Currey, J.D. (2003). How well are bones designed to resist fracture? J. Bone Miner. Res 18(4), 591598.Google Scholar
Eckardt, I. & Hein, H.J. (2001). Quantitative measurements of the mechanical properties of human bone tissues by scanning acoustic microscopy. Ann. Biomed. Eng. 29(12), 10431047.Google Scholar
Evans, J.A. & Tavakoli, M.B. (1990). Ultrasonic attenuation and velocity in bone. Phys. Med. Biol. 35(10), 13871396.Google Scholar
Ferguson, V.L., Bushby, A.J. & Boyde, A. (2003). Nanomechanical properties and mineral concentration in articular calcified cartilage and subchondral bone. J. Anat. 203(2), 191202.Google Scholar
Fratzl, P., Gupta, H.S., Paschalis, E.P. & Roschger, P. (2004). Structure and mechanical quality of the collagen-mineral nano-composite in bone. J. Mater. Chem. 14, 21152123.Google Scholar
Fratzl, P. & Weinkamer, R. (2007). Nature’s hierarchical materials. Prog Mater Sci 52(8), 12631334.Google Scholar
Fry, F.J. & Barger, J.E. (1978). Acoustical properties of the human skull. J. Acoust. Soc. Am. 63(5), 15761590.CrossRefGoogle ScholarPubMed
Granke, M., Gourrier, A., Rupin, F., Raum, K., Peyrin, F., Burghammer, M., Saied, A. & Laugier, P. (2013). Microfibril orientation dominates the microelastic properties of human bone tissue at the lamellar length scale. PLoS One 8(3), e58043.CrossRefGoogle ScholarPubMed
Gupta, H.S., Schratter, S., Tesch, W., Roschger, P., Berzlanovich, A., Schoeberl, T., Klaushofer, K. & Fratzl, P. (2005). Two different correlations between nanoindentation modulus and mineral content in the bone-cartilage interface. J. Struct. Biol. 149(2), 138148.CrossRefGoogle ScholarPubMed
Gupta, H.S., Stachewicz, U., Wagermaier, W., Roschger, P., Wagner, H.D. & Fratzl, P. (2006). Mechanical modulation at the lamellar level in osteonal bone. J Mater Res 21(08), 19131921.Google Scholar
Hänel, V. & Kleffner, B. (2000). Double focus technique for simultneous measurement of sound velocity and thickness of thin samples using time-resolved acoustic microscopy. Acoustical Imaging 24, 187192.Google Scholar
Hansen, U., Zioupos, P., Simpson, R., Currey, J.D. & Hynd, D. (2008). The effect of strain rate on the mechanical properties of human cortical bone. J. Biomech. Eng. 130(1), 011011.Google Scholar
Hasegawa, K., Turner, C.H. & Burr, D.B. (1994). Contribution of collagen and mineral to the elastic anisotropy of bone. Calcif. Tissue Int. 55(5), 381386.Google Scholar
Hasegawa, K., Turner, C.H., Recker, R.R., Wu, E. & Burr, D.B. (1995). Elastic properties of osteoporotic bone measured by scanning acoustic microscopy. Bone 16(1), 8590.Google Scholar
Hengsberger, S., Boivin, G. & Zysset, P.K. (2002). Morphological and mechanical properties of bone structural units: a two-case study. JSME 45(4), 936943.Google Scholar
Hoc, T., Henry, L., Verdier, M., Aubry, D., Sedel, L. & Meunier, A. (2006). Effect of microstructure on the mechanical properties of Haversian cortical bone. Bone 38(4), 466474.Google Scholar
Katz, J.L. & Meunier, A. (1993). Scanning acoustic microscope studies of the elastic properties of osteons and osteon lamellae. J. Biomech. Eng 115(4B), 543548.Google Scholar
Katz, J.L. & Meunier, A. (1997). Scanning Acoustic Microscopy of human and canine cortical bone microstructure at high frequencies. Stud. Health Technol. Inform. 40, 123137.Google Scholar
Kotha, S.P., DePaula, C.A., Mann, A.B. & Guzelsu, N. (2008). High frequency ultrasound prediction of mechanical properties of cortical bone with varying amount of mineral content. Ultrasound Med. Biol. 34(4), 630637.Google Scholar
Kujawska, T., Wojcik, J. & Filipczynski, L. (2004). Possible temperature effects computed for acoustic microscopy used for living cells. Ultrasound Med. Biol. 30(1), 93101.Google Scholar
Lang, S.B. (1970). Ultrasonic method for measuring elastic coefficients of bone and results on fresh and dried bovine bones. IEEE Trans. Biomed. Eng. 17(2), 101105.Google Scholar
Lees, S., Ahern, J.M. & Leonard, M. (1983). Parameters influencing the sonic velocity in compact calcified tissues of various species. J. Acoust. Soc. Am. 74(1), 2833.Google Scholar
Lees, S., Heeley, J.D. & Cleary, P.F. (1979). A study of some properties of a sample of bovine cortical bone using ultrasound. Calcif. Tissue Int. 29(2), 107117.Google Scholar
Lees, S. & Klopholz, D.Z. (1992). Sonic velocity and attenuation in wet compact cow femur for the frequency range 5 to 100 MHz. Ultrasound Med. Biol. 18(3), 303308.Google Scholar
Litniewski, J. (2005). Determination of the elasticity coefficient for a single trabecula of a cancellous bone: scanning acoustic microscopy approach. Ultrasound Med. Biol. 31(10), 13611366.Google Scholar
Madry, H., van Dijk, C.N. & Mueller-Gerbl, M. (2010). The basic science of the subchondral bone. Knee Surg. Sports Traumatol. Arthrosc 18(4), 419433.Google Scholar
Mavko, G., Mukerji, T. & Dvorkin, J. (2009). The rock physics handbook: tools for seismic analysis of porous media. Cambridge, UK; New York: Cambridge University Press.Google Scholar
McElhaney, J.H. (1966). Dynamic response of bone and muscle tissue. J. Appl. Physiol. 21(4), 12311236.Google Scholar
Meunier, A., Katz, J.L., Christel, P. & Sedel, L. (1988). A reflection scanning acoustic microscope for bone and bone-biomaterials interface studies. J. Orthop. Res. 6(5), 770775.Google Scholar
Nicholson, P.H., Cheng, X.G., Lowet, G., Boonen, S., Davie, M.W., Dequeker, J. & Van der Perre, G. (1997). Structural and material mechanical properties of human vertebral cancellous bone. Med. Eng. Phys. 19(8), 729737.Google Scholar
Nicholson, P.H. & Strelitzki, R. (1999). On the prediction of Young's modulus in calcaneal cancellous bone by ultrasonic bulk and bar velocity measurements. Clin. Rheumatol. 18(1), 1016.Google Scholar
Njeh, C.F., Hodgskinson, R., Currey, J.D. & Langton, C.M. (1996). Orthogonal relationships between ultrasonic velocity and material properties of bovine cancellous bone. Med. Eng. Phys. 18(5), 373381.Google Scholar
Nomura, T., Katz, J.L., Powers, M.P. & Saito, C. (2007). A micromechanical elastic property study of trabecular bone in the human mandible. J. Mater. Sci. Mater. Med 18(4), 629633.Google Scholar
Oyen, M.L., Ferguson, V.L., Bembey, A.K., Bushby, A.J. & Boyde, A. (2008). Composite bounds on the elastic modulus of bone. J. Biomech. 41(11), 25852588.Google Scholar
Raum, K. (2003). Multilayer Analysis:Quantitative Scanning Acoustic Microscopy for Tissue Characterization at a Microscopic Scale. IEEE Trans Ultrason Ferroelectr Freq Control 50(5), 507516.Google Scholar
Raum, K., Leguerney, I., Chandelier, F., Talmant, M., Saied, A., Peyrin, F. & Laugier, P. (2006). Site-matched assessment of structural and tissue properties of cortical bone using scanning acoustic microscopy and synchrotron radiation muCT. Phys. Med. Biol. 51(3), 733746.Google Scholar
Raum, K., Reisshauer, J. & Brandt, J. (2004). Frequency and resolution dependence of the anisotropic impedance estimation in cortical bone using time-resolved scanning acoustic microscopy. J Biomed Mater Res A 71(3), 430438.Google Scholar
Rho, J.Y. (1998). Ultrasonic characterisation in determining elastic modulus of trabecular bone material. Med. Biol. Eng. Comput. 36(1), 5759.Google Scholar
Rho, J.Y., Ashman, R.B. & Turner, C.H. (1993). Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J. Biomech. 26(2), 111119.Google Scholar
Rho, J.Y., Kuhn-Spearing, L. & Zioupos, P. (1998). Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20(2), 92102.Google Scholar
Rho, J.Y. & Pharr, G.M. (1999). Effects of drying on the mechanical properties of bovine femur measured by nanoindentation. J. Mater. Sci. Mater. Med 10(8), 485488.Google Scholar
Rho, J.Y., Tsui, T.Y. & Pharr, G.M. (1997). Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 18(20), 13251330.Google Scholar
Rodriguez-Florez, N., Oyen, M.L. & Shefelbine, S.J. (2013). Insight into differences in nanoindentation properties of bone. J Mech Behav Biomed Mater 18, 9099.Google Scholar
Roschger, P., Eschberger, J. & Plenk, H. Jr. (1993). Formation of ultracracks in methacrylate-embedded undecalcified bone samples by exposure to aqueous solutions. Cells Mater 4, 361365.Google Scholar
Roschger, P., Fratzl, P., Eschberger, J. & Klaushofer, K. (1998). Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone 23(4), 319326.Google Scholar
Roschger, P., Manjubala, I., Zoeger, N., Meirer, F., Simon, R., Li, C., Fratzl-Zelman, N., Misof, B.M., Paschalis, E.P., Streli, C., Fratzl, P. & Klaushofer, K. (2010). Bone material quality in transiliac bone biopsies of postmenopausal osteoporotic women after 3 years of strontium ranelate treatment. J. Bone Miner. Res. 25(4), 891900.Google Scholar
Roschger, P., Paschalis, E.P., Fratzl, P. & Klaushofer, K. (2008). Bone mineralization density distribution in health and disease. Bone 42(3), 456466.Google Scholar
Roschger, P., Plenk, H. Jr., Klaushofer, K. & Eschberger, J. (1995). A new scanning electron microscopy approach to the quantification of bone mineral distribution: backscattered electron image grey-levels correlated to calcium K alpha-line intensities. Scanning Microsc 9(1), 7586. discussion 86-78.Google Scholar
Rupin, F., Saied, A., Dalmas, D., Peyrin, F., Haupert, S., Raum, K., Barthel, E., Boivin, G. & Laugier, P. (2009). Assessment of microelastic properties of bone using scanning acoustic microscopy: a face-to-face comparison with nanoindentation. Jpn. J. Appl. Phys. 48, 07GK01.Google Scholar
Saied, A., Raum, K., Leguerney, I. & Laugier, P. (2008). Spatial distribution of anisotropic acoustic impedance assessed by time-resolved 50-MHz scanning acoustic microscopy and its relation to porosity in human cortical bone. Bone 43(1), 187194.Google Scholar
Skedros, J.G., Bloebaum, R.D., Bachus, K.N., Boyce, T.M. & Constantz, B. (1993). Influence of mineral content and composition on graylevels in backscattered electron images of bone. J. Biomed. Mater. Res. 27(1), 5764.Google Scholar
Tai, K., Dao, M., Suresh, S., Palazoglu, A. & Ortiz, C. (2007). Nanoscale heterogeneity promotes energy dissipation in bone. Nat Mater 6(6), 454462.Google Scholar
Takano, Y., Turner, C.H. & Burr, D.B. (1996). Mineral anisotropy in mineralized tissues is similar among species and mineral growth occurs independently of collagen orientation in rats: results from acoustic velocity measurements. J. Bone Miner. Res. 11(9), 12921301.Google Scholar
Tennyson, R.C., Ewert, R. & Niranjan, V. (1972). Dynamic viscoelastic response of bone. Exp Mech 12(11), 502507.CrossRefGoogle Scholar
Turner, C.H., Chandran, A. & Pidaparti, R.M. (1995). The anisotropy of osteonal bone and its ultrastructural implications. Bone 17(1), 8589.Google Scholar
Turner, C.H., Takano, Y. & Hirano, T. (1996). Reductions in bone strength after fluoride treatment are not reflected in tissue-level acoustic measurements. Bone 19(6), 603607.Google Scholar
Weber, M., Schoeberl, T., Roschger, P., Klaushofer, K. & Fratzl, P. (2005). Relating local bone stiffness and calcium content by combined nanoindentation and backscattered electron imaging. MRS Proceedings 874, 7984.Google Scholar
Weiss, S., Zimmerman, M.C., Harten, R.D., Alberta, F.G. & Meunier, A. (1998). The acoustic and structural properties of the human femur. J. Biomech. Eng. 120(1), 7176.Google Scholar
Zysset, P.K., Guo, X.E., Hoffler, C.E., Moore, K.E. & Goldstein, S.A. (1999). Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J. Biomech. 32(10), 10051012.Google Scholar